

GPS Constellation Update and International Cooperation

International Workshop on the Use of Space Technology for Sustainable Development Rabat, Morocco 25-27 April 2007

Dr. Fernando R. Echavarria

Office of Space & Advanced Technology Bureau of Oceans, Environment & Science U.S. Department of State <u>echavarriafr@state.gov</u> <u>fernandjane@verizon.net</u>

> *Jim Jimenez* U.S. Embassy Rabat <u>jimenezja@state.gov</u>

- System Is Constant and Reliable
 - Constant Upgrades
 - U.S. Air Force is the Steward... 24/7
 - Resolution is 6 Meters Contractual, Less than
 1 Meter in Practice
 - Improved Performance Through Augmentation Systems
- Interoperability a Key Feature

- System Improvements & Modernization
- GPS Constellation Status
 - Next Steps for Space and Control Segments
- Interoperability & International Collaboration
- Summary

GPS Constellation Status as of 9 Mar 07



29 Healthy Satellites

Baseline Constellation: 24

- 14 Block IIA satellites operational
- 12 Block IIR satellites operational
- 3 Block IIR-M satellites operational
 - 5 additional IIR-M satellites to launch
- Since Dec 93, U.S. Government met/exceeded civil GPS service performance commitments
 - SPS Performance Standard (PS)
- U.S. committed to superior GPS service

IIR-15(M) Launch & ISS View 25 September 2006

IIR-16(M) Launch 17 November 2006

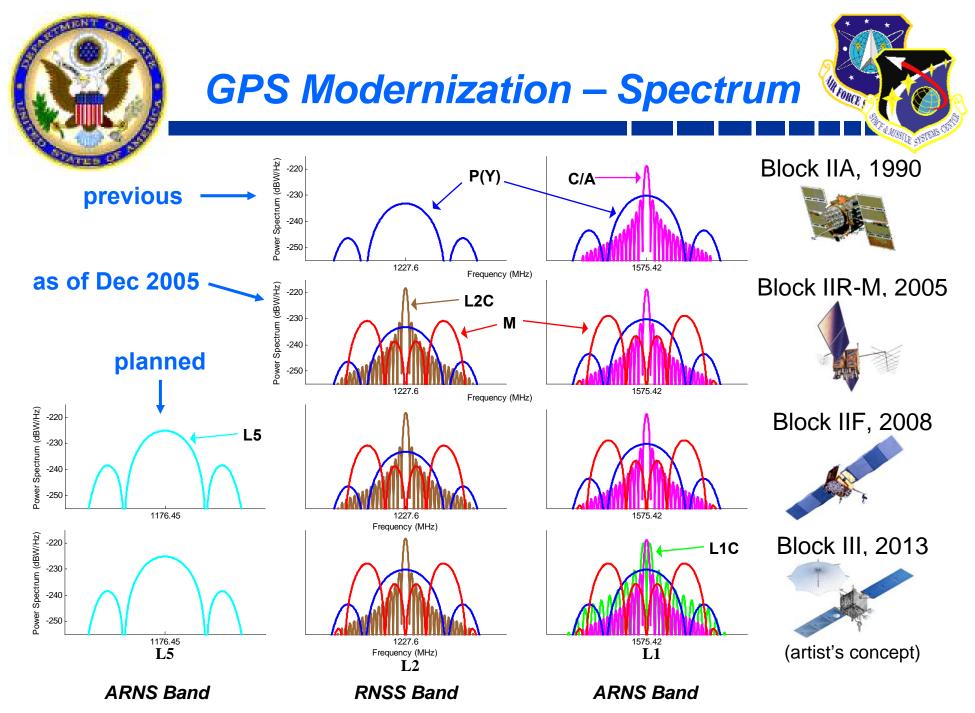
GPS constellation – Delivering excellent performance

URE

0.6 0.22 0.69 1.29 1.08 0.33 0.5 0.45 0.45 0.49 0.17 0.09 0.43 0.23 0.52 1.08

							-					
		Orbital Slot	SVN	PRN	Block	URE			Orbital Slot	SVN	PRN	Block
	A-plane	A-1	39	9	IIA	1.11	D-plane		D-1	61	2	IIR
		A-2	25	25	IIA	2.61		ne	D-2	46	11	IIR
		A-2	52	31	IIR	0.14		pla	D-3	45	21	IIR
		A-3	38	8	IIA	0.36		E-plane D-	D-4	34	4	IIA
		A-4	27	27	IIA	2.13			D-6	24	24	IIA
	B-plane	B-1	56	16	IIR	0.45			E-1	51	20	IIR
		B-2	30	30	IIA	2.06			E-2	47	22	IIR
		B-3	44	28	IIR	0.68			E-3	40	10	IIA
		B-4	35	5	IIA	0.6			E-4	54	18	IIR
		B-5	58	12	IIR	0.16	F-plane		F-1	41	14	IIR
	C-plane	C-1	36	6	IIA	1.05		F-2	26	26	IIA	
		C-2	33	3	IIA	0.36		F-plane	F-3	43	13	IIR
		C-3	59	19	IIR	0.38			F-4	60	23	IIR
		C-4	53	17	IIR	0.21			F-5	29	29	IIA
		C-5	37	7	IIA	0.69			F-6	32	1	IIA

Average URE from 30 GPS SVs: 0.71 m


NASA JPL data on Wed Feb 21 17:46:02 2007 (UTC)

- System Improvements & Modernization
 - GPS Constellation Status
- Next Steps for Space and Control Segments
 - Interoperability & International Collaboration
 - Summary

GPS Evolutionary "System-of-Systems" Programs

Space Segment

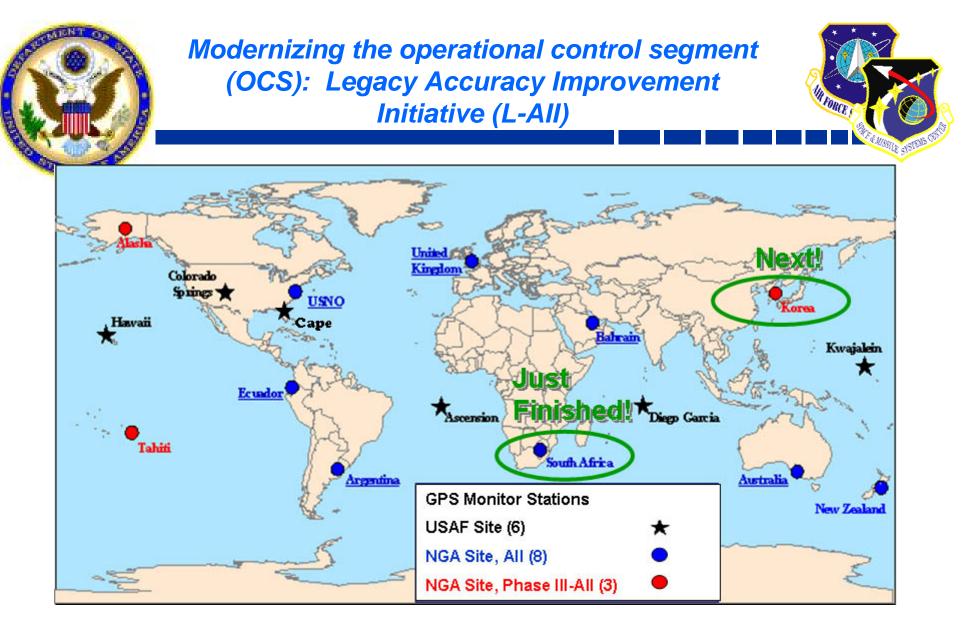
Legacy (Block IIA/IIR)

- Std Service (≤ 6 meters RMS SIS SPS URE)
 - Single frequency (L1)
 - Coarse acquisition (C/A) code navigation
- Precise Service (≤ 2.6 m 95% URE PPS at Zero AOD)
 - Y-Code (L1Y & L2Y)
 - Y-Code navigation

Modernized (Block IIR-M)

- 2nd civil signal (L2C)
- M-Code signals (L1M, L2M)
- Anti-jam flex power

Modernized (Block IIF)


3rd civil signal (L5)

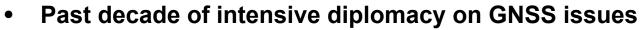
GPS III (Block III)

- Increased accuracy
- Increased A/J power
- Signal integrity
- Search and Rescue
- L1C civil signal common w/Galileo, QZSS, & possibly GLONASS

Ground Segment

Legacy TT&C L1 & L2 monitoring Upgraded (AEP) IIR-M IIF TT&C WAGE, All, LADO WMCS/AMCS MCS/AMCS Modernized (OCX V1) New Architecture Signal Monitoring GPS III (OCX V2) GPS III (OCX V2) GPS III TT&C Real-Time C2

- Each SV tracked by three or more monitor stations over 99% of time
- Zero age-of-data URE improved from ~46 cm to ~27 cm
- L-All SIS URE improved from ~1.25 m to ~1.05 m



- System Improvements & Modernization
 - GPS Constellation Status
 - Next Steps for Space and Control Segments
- Interoperability & International Collaboration
 - Summary

International Cooperation

- 1996 First State Department-led GPS team visits Tokyo
- 1997 Bid at WRC to share GNSS frequency band with other services narrowly averted
- 1997 First US-EU discussions on satellite navigation
- 1998 to present GNSS consultations with more than two dozen countries
- Positive results of these efforts beginning to be seen
 - New satellite constellations and regional augmentations systems, while independently owned and operated, are being designed to be compatible and interoperable
 - Coordination mechanisms are being created to promote interoperability, promote GNSS use, and ensure a level playing field in the global marketplace

GPS-Galileo Cooperation

- In 2004, United States and European Community signed landmark agreement on GPS-Galileo cooperation
 - Recognizes importance of compatibility/interoperability for all parties
 - Agreed to spectrally separate signals for military and civilian services
 - Agreed to implement a common, open, civil signal on both Galileo and GPS III
- Working Groups established to continue dialogue:
 - Compatibility & Interoperability
 - Trade & Civil Applications
 - Next-Generation GNSS
 - Security Issues
- Joint Handout on "GPS and Galileo... Progress Through Partnership" distributed at Munich Summit

June 26, 2004, press conference at U.S.-EU Summit in Ireland (U.S. Sec. of State Colin Powell, Irish Foreign Minister Brian Cowen, EU Vice-President Loyola De Palacio)

US-Japan Cooperation

- Japan's status as a world leader in GPS applications and user equipment makes it an important partner
- Policy consultations and technical meetings on GPS cooperation have been held since 1996 between the United States and Japan
- Discussion topics include Japan's regional augmentation system (MSAS) and interoperability between GPS and Japan's planned Quasi-Zenith Satellite System (QZSS)

GPS-GLONASS Cooperation

 Discussions on US-Russia agreement on satellite navigation cooperation have been underway since late 2005

- Next meeting is planned for spring 2007

- Working groups are pursuing GPS-GLONASS interoperability
 - Enhanced PNT availability through common open service civil signals
 - Cooperative search and rescue capabilities

US-India Cooperation

- Policy and technical consultations on GPS cooperation have been held since 2005 between the US and India
- One aim is to ensure interoperability between GPS augmentation system WAAS and India's planned GAGAN augmentation system based on GPS
- Another important topic is ionospheric distortion and solutions
- US-India Joint Statement on GNSS Cooperation issued in February 2007 in Washington

- Continuing success in GPS sustainment & modernization
 - New capabilities delivering enhanced performance
 - Developments on track to enhance space and control segments
- International Collaboration
 - Excellent cooperation with civil service providers
 - Improving RNSS interoperability/compatibility for best GNSS