SBAS-type ionospheric correction and integrity assessment experiment in the Central and South American regions

Claudio Brunini & Francisco Azpilicueta

Geodesia Espacial y Aeronomía

Facultad de Ciencias Astronómicas y Geofísicas

Universidad Nacional de La Plata

Argentina

GFSA

Satellite Based Augmentation Systems (SBAS)

- SBAS are primarily designed to provide integrity for GNSS-based navigation (e.g.: for civil aviation).
- Integrity includes the ability to provide timely warnings to the user when the system should not be used for the intended operation.
- The probability of supplying so called 'hazardously misleading information' is required to remain extremely small (~10⁻⁷).
- Integrity standards for civil aviation are defined by:
 - ✓ ICAO, International Standards and Recommended Practices (SARPS), Annex 10, Vol I, 5th Edition, Jul 1996.
 - ✓ RTCA, Minimum Operational Performance Standards for GPS/WAAS Airborne Equipment, SC159 Do-229C, Washington, D.C., Nov 2001.

Satellite Based Augmentation Systems (SBAS)

- In addition to integrity, SBAS can provide corrections to improve the navigation accuracy.
- At present, the ionosphere is the main natural agent that deteriorates both, integrity and accuracy.

The CAR/SAM ionosphere presents an extremely challenging problem for SBAS developments.

ICAO promotes an SBAS project for the CAR/SAM regions: RLA/03/902 – SACCSA (Solución de Aumentación para el Caribe, Centro y Sur América).

SBAS integrity on Signal in Space according to ICAO

Described in terms of:

- ✓ position errors: HPE (horizontal) and VPE (vertical);
- ✓ protection levels: HPL (horizontal) and VPL (vertical); and

✓ alert limits: HAL (horizontal) and VAL (vertical).

Operation	HAL	VAL
NPA	0,3 NM	N/A
APV I	0,3 NM	50 m
APV II	40 m	20 m
CATI	40 m	15 - 10 m

Roturier et al., 2001. The SBAS Integrity Concept Standardised by ICAO. Application to EGNOS. EGNOS navigation conference publications.

GIVD and GIVE computation

Based on the use of the La Plata Ionospheric Model (LPIM).

✓ Brunini et. al. South American regional ionospheric maps computed by GESA: a pilot service in the framework of SIRGAS, Advances in Space Research, doi 10.1016/j.asr.2007.08.041, 2008.

Computation (now-cast and forecast) of 2.5°x2.5° GIVD and GIVE every 5^m by means of an adaptative and robust Kalman filter specially tuned for the CAR/SAM regions.

Data from 50 stations belonging to the SIRGAS-CON system (<u>www.sirgas.org</u>).

Computation of position errors

□ 12 stations that did not participate in the GIVD and GIVE computation.

□ *sTEC* computed from LPIM compared to the corresponding value computed from GIVD

$$e_{sTEC} = sTEC - \sec z' \cdot \sum_{i=1}^{4} w_i \cdot GIVD_i$$

□ *sTEC* errors are propagated to position

GFSA

10

Database

One week per month from May 2006 to May 2007 (82 complete days).

Low solar activity.

Quiet geomagnetic conditions (Dst > -50).

Conclusions

Results are encouraging:

✓ horizontal and vertical position errors (HPE and VPE) are well below the corresponding alert limits for APV II (HAL=40 m and VAL=20 m);

 ✓ samples never fall into the 'hazardously misleading information' nor the 'not available' regions;

✓ the percentage of samples falling into the 'misleading information' region remains lower than 0.2%.

□ Much more job must be done:

 ✓ 0.2% 'misleading information' samples is still far from 0.00002% required by ICAO standards! GIVE computation must be improved;

 high solar activity and disturbed ionospheric conditions must be investigated.

Many thanks for your attention

Contact information: Dr. Claudio Brunini / Dr. Francisco Azpilicueta GESA Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata Paseo del Bosque S/N 1900, La Plata Argentina Tel.: +54 221 423 6593 ext 154 Fax: +54 221 423 6591 E. Mail: claudiobrunini@yahoo.com azpi@fcaglp.unlp.edu.ar