

A Benefit Assessment of GEOSS: Results from the Geo-Bene project

S. Fritz, M. Obersteiner

International Institute for Applied Systems Analysis (IIASA), Austria

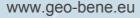
With Contributions from Geo-Bene partners

UN/Austria/ESA Symposium Graz 9/09/2008

Overview

- The Geo-bene project
- Review of current assessments Public benefit assessment
- The benefit chain concept
- Example Uncertainties in Land Cover Information
- Example Banda Aceh/ Tsunami
- Example Algae Bloom in the North Sea
- Example Conservation planning
- Example food security in Africa

2



- 7.5 billion people
- temperature increase > 1 degree
- little wilderness, new diseases....

governments will be asking for information observations systems need 20 years to be designed, tested, implemented

... the time to start their design is now

and we need to document today's baseline . of a world with only "small" change

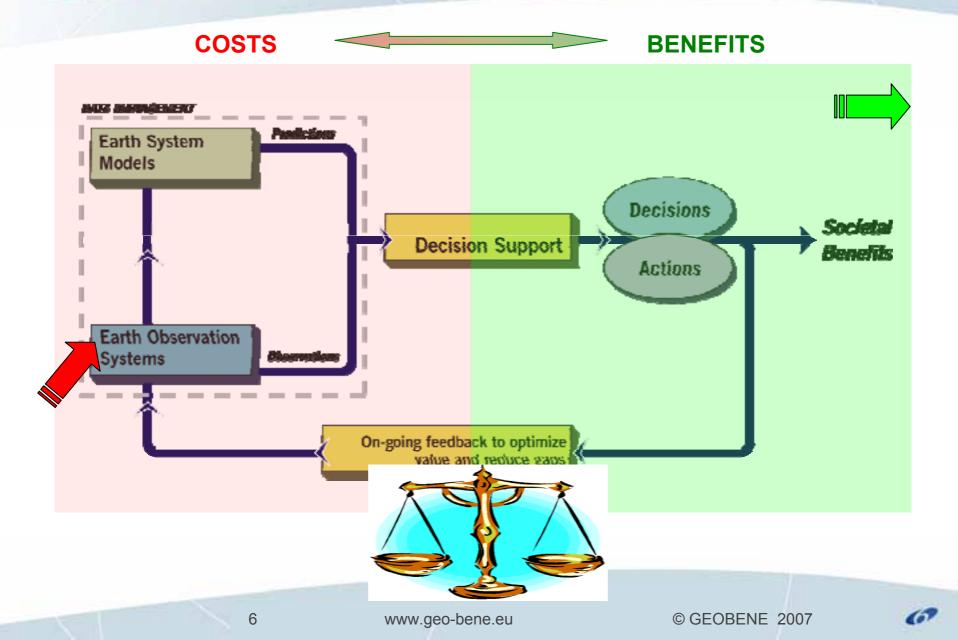
3

Objective of GEOBENE

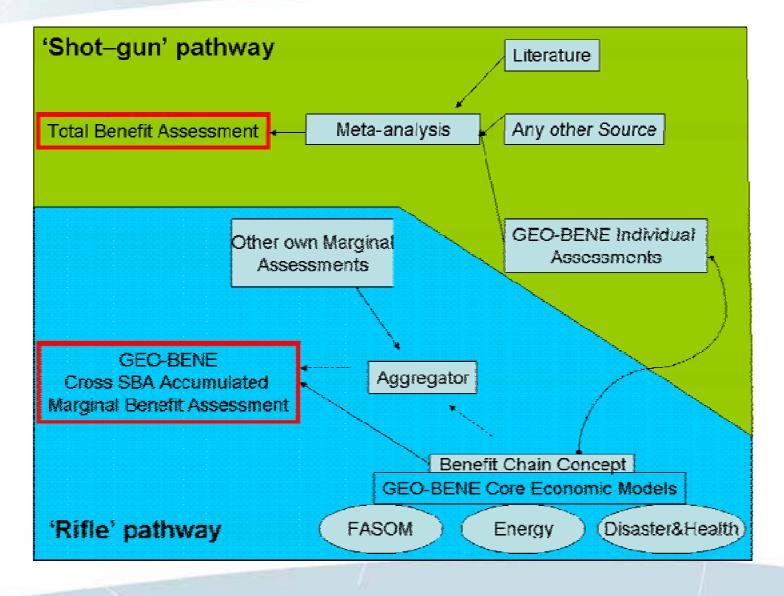
4

... to develop **methodologies (Ph1)** and **analytical tools** (Ph2) to assess societal benefits of GEO and to **perform benefit assessments (Ph3)**.

www.geo-bene.eu


Review of (Cost) - Benefit Assessments

- Pricewaterhous Coopers study (GMES) benefit assessment
- Environmental Protection Agency (USA)
- A number of studies which look at the benefit from an improved weather forecast
- M.Macaulay (2006) applies the VOI theory and methods to show how space-based Earth Observations can improve natural resource management
- Yesterdays presentation in RS for Agriculture: decision support system used to produce global crop yield estimates by the USDA's Office of Global Analysis/International Production Assessment Branch (IPA)


GEOBENE

www.geo-bene.eu

GEOBENE

www.geo-bene.eu

7

Table 10.1 GEOSS Ten-Year Implementation Plan: Relative Phasing and Maturity of Earth Observation Application

An initial synoptic description of the phasing of GEOSS implementation.

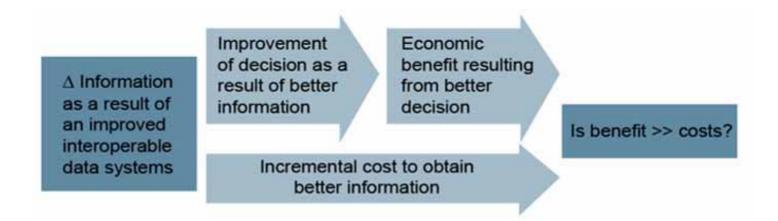
Topics	Disaster	Health	Energy	Climate	Water	W	ather	Eco- systems	Agri- culture	Bio- diversity
Periods (years)	2 6 10	2 6 10	2 6 10	2 6 10	2 6 10	2	6 10	2 6 10	2 6 10	2 6 10
Observation:										
1 In situ and airborne	ΙΙΙ		I 0 0	I 0 0	ΙΙΟ	0	0 0	ΙΙΟ	ΙΙΟ	ΙΙΟ
2 Space-based	ΙΙΙ		I 0 0	I 0 0	ΙΙΟ	0	0 0	ΙΙΟ	P I O	P I O
3 Convergence of Obs.	P I I		P I O	I 0 0	P I O	0	0 0	P I O	ΡΟΟ	P I O
4 Continuity	P P I		I I O	ΙΙΟ	ΙΙΟ	0	0 0	P I O	P P I	ΡΙΟ
Product:										
5 Key Products	P I O		Most	opera	tiona	0	0 0	ΙΙΟ	ΙΙΟ	I I O
6 Modeling/Assimilation	P I I	Represen-	area:				0 0	P I O	P I O	P I O
7 Synergy of Products	P I I	tation of the	alta.	weat	Iei	Р	ΙO	P I O	P I O	P I O
8 Quality Control	P P I	phasing has not yet been	I I O	P I O	P I O	0	0 0	P I O	P I O	P I O
Data Management:		determined								
9 Accessibility	ΙΙΟ		I I O	P I O	ΙΙΟ	0	0 0	P I O	I I O	P I O
10 Data Exchange	I I O		I I O	P I O	P I O	0	0 0	P I O	P I O	P I O
11 Interoperability	P I I		P I O	P I O	P I O	Р	ΙΟ	P I O	P I O	P I O
12 User Involvement	ΙΙΙ		P I O	0 0 I	P 0 0	0	0 0	P I O	I 0 0	P I O
13 R & D for Observation	ΙΙΙ		ΙΙΙ	ΙΙΙ	ΙΙΙ	Ι	ΙI	P I I	P I O	P I I
Capacity Building:										
14 Capacity Building	P I I		ΙΙΟ	ΙΙΟ	P I O	Ι	I O	P I O	I 0 0	P I O

0

Operational Phase

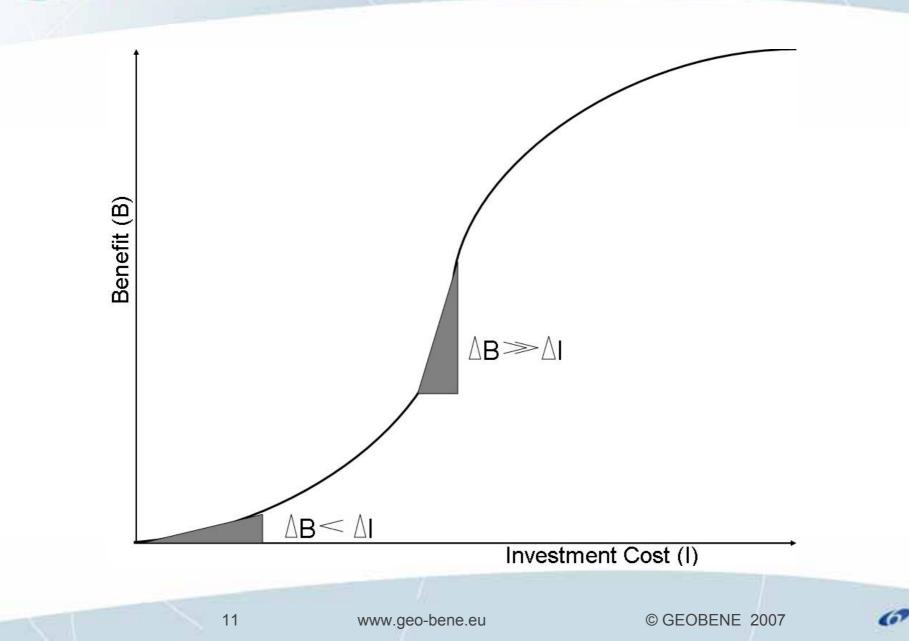
		Legend	Р	Planning Phase	Ι	Implementation Phase
--	--	--------	---	----------------	---	----------------------

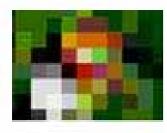
Table 10.1 GEOSS Ten-Year Implementation Plan: Relative Phasing and Maturity of Earth Observation Application


An initial synoptic description of the phasing of GEOSS implementation.

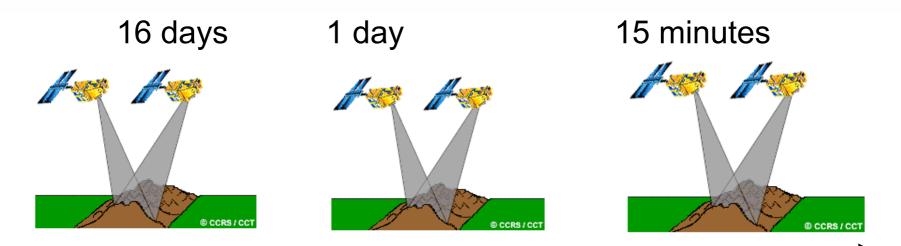
Topics	Disaster	Health	Energy	Climate	ľ	/ater	Weather	Eco- systems	c	lture	Bio- diversity
Periods (years)	2 6 10	2 6 10	2 6 10	2 6 10	2	6 10	2 6 10	2 6 10	2	6 10	2 6 10
Observation:											
1 In situ and airborne	ΙΙΙ		I 0 0	I 0 0	Ι	ΙΟ	0 0 0	ΙΙΟ	Ι	ΙΟ	ΙΙΟ
2 Space-based	ΙΙΙ		I 0 0	I 0 0	Ι	ΙΟ	0 0 0	I I O	Р	ΙΟ	P I O
3 Convergence of Obs.	P I I		P I O	I 0 0	Р	ΙΟ	0 0 0	P I O	Р	0 0	P I O
4 Continuity	P P I		ΙΙΟ	ΙΙΟ	Ι	ΙΟ	0 0 0	P I O	Р	ΡI	ΡΙΟ
Product:											
5 Key Products	P I O		ΙΙΟ	P I O	Р	2 n	d mos	t	Ι	ΙΟ	ΙΙΟ
6 Modeling/Assimilation	P I I	Represen-	ΙΙΟ	P I O	Ι	oh	vioue	areas	Р	ΙΟ	P I O
7 Synergy of Products	P I I	tation of the	P I O	P I O	Р		vious	aicas	Р	ΙΟ	P I O
8 Quality Control	P P I	phasing has not yet been	ΙΙΟ	P I O	Р	l Wa	ater &		Р	ΙΟ	P I O
Data Management:		determined					بلابيماني				
9 Accessibility	ΙΙΟ		I I O	P I O	Ι	Ag	ricult	ure:	Ι	ΙΟ	P I O
10 Data Exchange	I I O		ΙΙΟ	P I O	Р	sti	ll mos	tlv	Р	Ι Ο	P I O
11 Interoperability	P I I		P I O	P I O	Р			-	Р	ΙO	P I O
12 User Involvement	ΙΙΙ		P I O	I 0 0	Р	in	planni	ng!!?	Ι	0 0	P I O
13 R & D for Observation	ΙΙΙ		ΙΙΙ	ΙΙΙ	Ι	$(\rightarrow$	huge		Р	I 0	P I I
Capacity Building:				i							
14 Capacity Building	P I I		ΙΙΟ	ΙΙΟ	Р	be	nefits)	Ι	0 0	P I O

Leg	gend	Р	Planning Phase	Ι	Implementation Phase	0	Operational Phase
-----	------	---	----------------	---	----------------------	---	--------------------------


The benefit chain An introduction to the benefit chain


www.geo-bene.eu

Improvement though higher spatial resolution

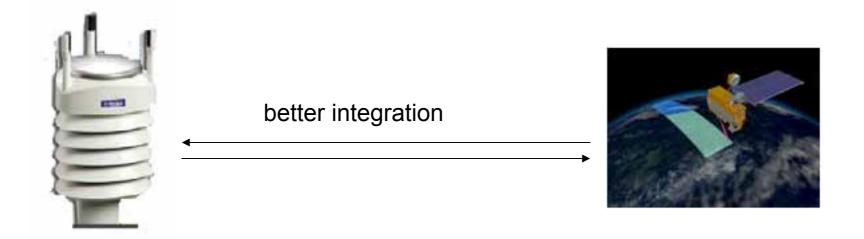


Increasing spatial resolution

Improvement though higher temporal resolution

Increasing temporal resolution

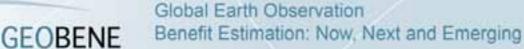
www.geo-bene.eu



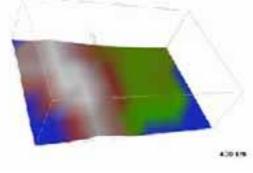
http://www.earsc.org/web/pdf/workshop07/DCarrasco.pdf

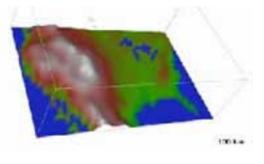
GEOBENE

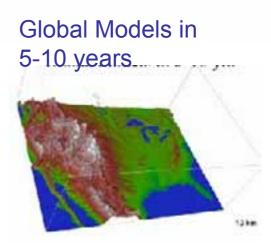
Global Earth Observation Benefit Estimation: Now, Next and Emerging

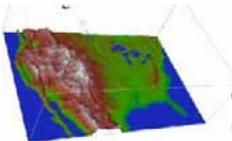

Improvement through better integration of Satellite EO and in-situ

14


www.geo-bene.eu




Improvement through better and improved models (models informed by observations)


Climate Models early 1990s

Global coupled climate models in 2006

better models

Comparison with current regional model (resolution 25 km)

Rin

Source: NCAR

15

www.geo-bene.eu

GE	Improvement to be realised	Effect	Selected Examples	Importance within GEOSS
	Optimisation of the overall observation strategy, avoiding unnecessary redundancy in EO missions and systems	Reduction of costs	Recent co-ordination between EUOMETSAT, CNES,NOAA, NASA and joint research announcement of the Ocean Surface topology science team (Eumetsat and CNES, 2007)	High
	More frequent observation due to better co-ordination, eg by having constellations of satellites, wider swathes and automated in situ systems	Better temporal resolution, ability to resolve rapid or short-duration phenomena	The shortened revisit time that can be achieved by combining the optical- band observations by Modis (2x), MERIS and SeaWIFS	Medium
	Better sensors (e.g. more bands, different technologies, greater sensitivity)	More types of observations available, greater accuracy	Case study on hyper spectral sensors	Medium
	More timely information delivery	Near-real time observations for issues that require quick response	The AFIS fire warning system integrates data from MSG and Modis thermal sensors with weather data and sends a message to the cellphone of people in the fire path within minutes of fire detection	Medium
	Better integration of satellite and in-situ EO measurements	Calibration and validation of satellite products; better interpolation of in situ measurements; synergistic hybrid products.	EU fosters research in in- situ and satellite integration studies	High

Global Earth Observation

Benefit Estimation: Now, Next and Emerging

Improvement to be realised	Effect	Selected Examples	Importance within GEOSS
Long term continuity and	Guarantee of	The GMES project? Which focuses on	High
emphasis on systems operationally	continuous observations for operational purposes	operational systems	
Identification and closing of observation or information gaps	Spatially and topically comprehensive	Upper atmosphere observation over Africa currently limit the	High
	system	predictive capacity of weather forecast models over a wider area	
User engagement and user- oriented system design	A system that better addresses societal needs	There is currently no operational system for biodiversity observation, despite the urgent need and the existence of treaty based targets for reducing biodiversity loss	High
Improvement though model and data comparison	Improvement of quality and agreement in models	The TRANSCOM intercomparison of atmospheric transport as predicted by GCMs, against in situ observations of tracer gases	Low

Global Earth Observation

Benefit Estimation: Now, Next and Emerging

Improvement to be realised	Effect	Selected Examples	Importance within GEOSS
Long term continuity and emphasis on systems operationally	Guarantee of continuous observations for operational purposes	The GMES project? Which focuses on operational systems	High
Identification and closing of observation or information gaps	Spatially and topically comprehensive	Upper atmosphere observation over Africa currently limit the	High
	system	predictive capacity of weather forecast models over a wider area	
User engagement and user- oriented system design	A system that better addresses societal needs	There is currently no operational system for biodiversity observation, despite the urgent need	High
		and the existence of treaty based targets for reducing biodiversity loss	
Improvement though model and data comparison	Improvement of quality and agreement in models	The TRANSCOM intercomparison of atmospheric transport as predicted by GCMs, against in situ observations of tracer gases	Low

6

Global Earth Observation

Benefit Estimation: Now, Next and Emerging

Improvement to be realised	Effect	Selected Examples	Importance within GEOSS
Long term continuity and emphasis on systems operationally	Guarantee of continuous observations for operational purposes	The GMES project? Which focuses on operational systems	High
Identification and closing of observation or information gaps	Spatially and topically comprehensive system	Upper atmosphere observation over Africa currently limit the predictive capacity of weather forecast models over a wider area	High
User engagement and user- oriented system design	A system that better addresses societal needs	There is currently no operational system for biodiversity observation, despite the urgent need and the existence of treaty based targets for reducing biodiversity loss	High
Improvement though model and data comparison	Improvement of quality and agreement in models	The TRANSCOM intercomparison of atmospheric transport as predicted by GCMs, against in situ observations of tracer gases	Low

6

Home » create content

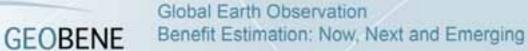
GEOBENE

Submit Shotgun Assessment If you have any further questions please contact Steffen (fritz@iiasa.ac.at) or Florian (kraxner@iiasa.ac.at) States in his .

Contact		N.
Please enter your contact details		
Institution:		
The name of your institution	전한 것을 적용할 수 있는 것 수 없어?	
Contratilismo		
ContactName:		<u> </u>
		;
Whom to contact for this study (e.g. email)		
		-
Area:		
T I		
Please choose the benefit area relevant	지금 방법은 원활, 영화	
	[[영문영국 신문병]] 남	
Comments:		÷.
omments:		3
		1

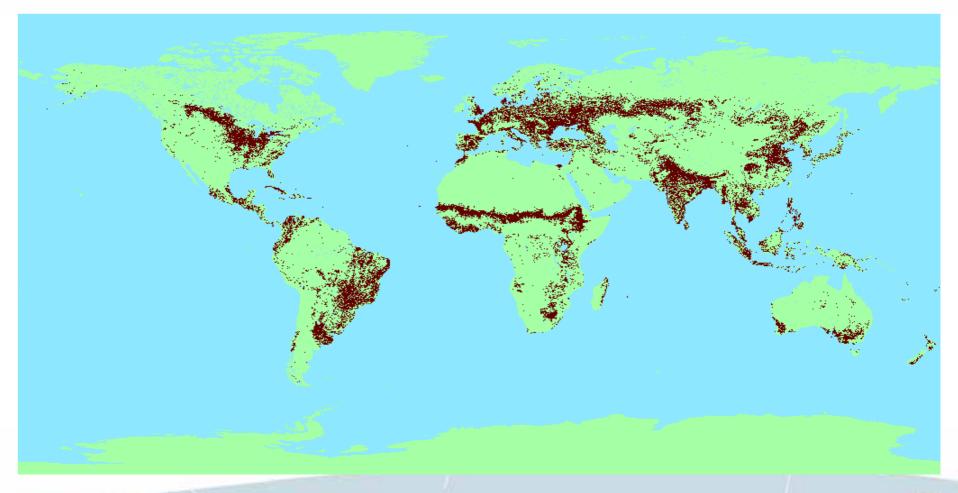
Where can the study be found?:

e.g. web link, institute, reference, email.. Please upload this study as a pdf in the next section "file attachments"!



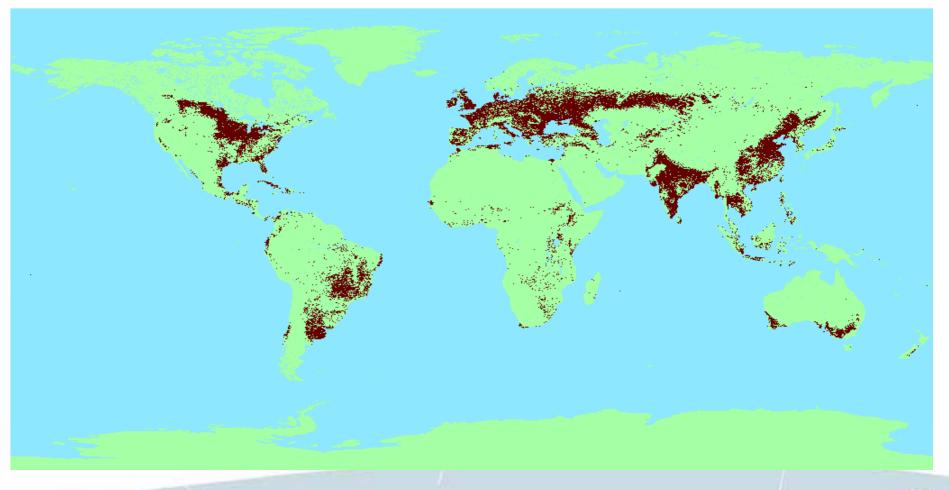
Example: Value of Land cover uncertainty reduction

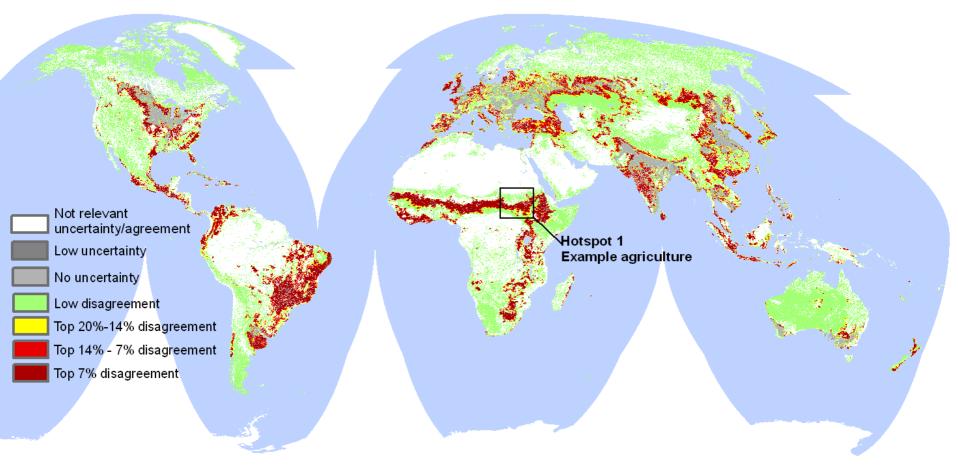
 Biofuels – Food Security – Water - GHG – Ecosystem Trade-off

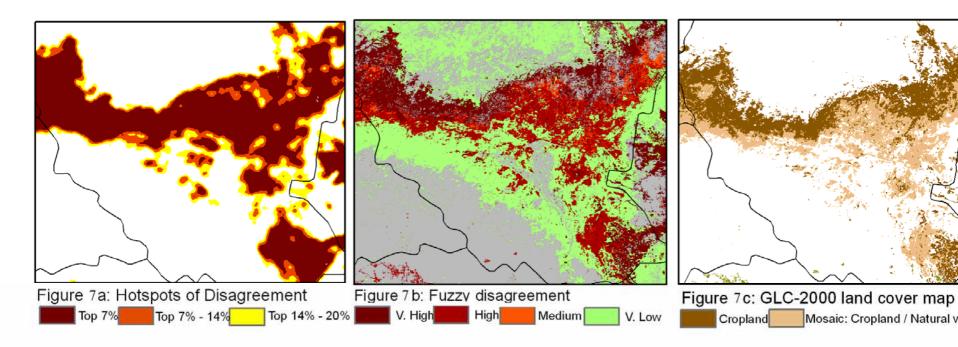


Land Constraint World Scenarios

22


GLC-2000 agricultural land: 2 363 M ha


MODIS-2000 agricultural land: 1 937 M ha


23

www.geo-bene.eu

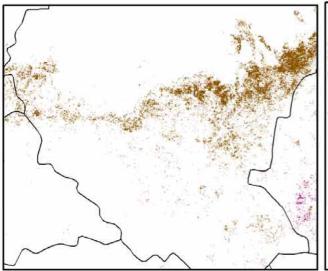


Figure 7d: MODIS land cover map

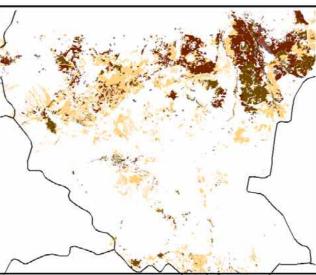
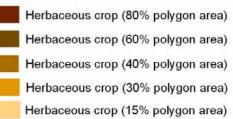



Figure 7 e: AFRICOVER Agricultural Areas

Legend for Figure 8e

Scenario to compute value of land availability uncertainty

GLOBIOM calculations

2030 estimated food and wood demand

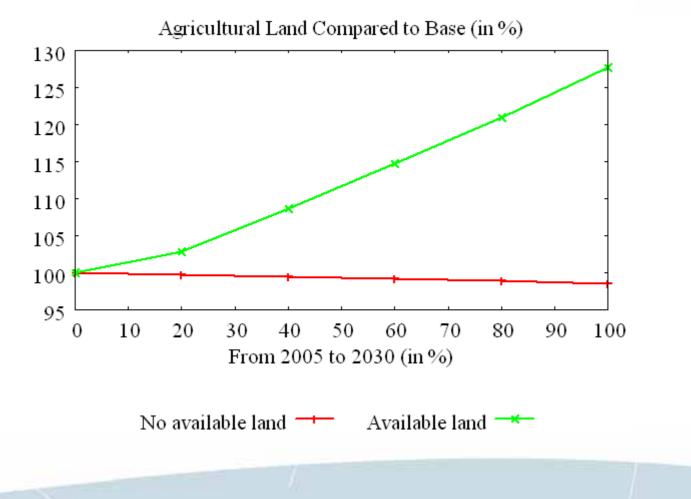
+

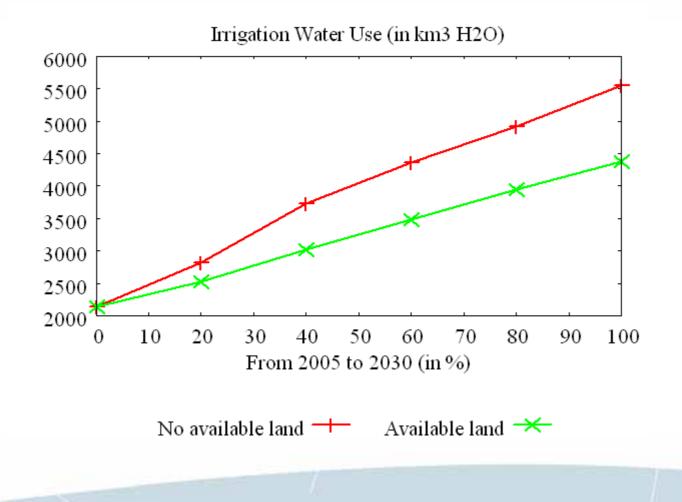
Substitution of up to **10% of transport oil energy** consumption according to IPCC/GGI A2r baseline scenario 2030 in each of the 11 regions by **ethanol**.

Variants

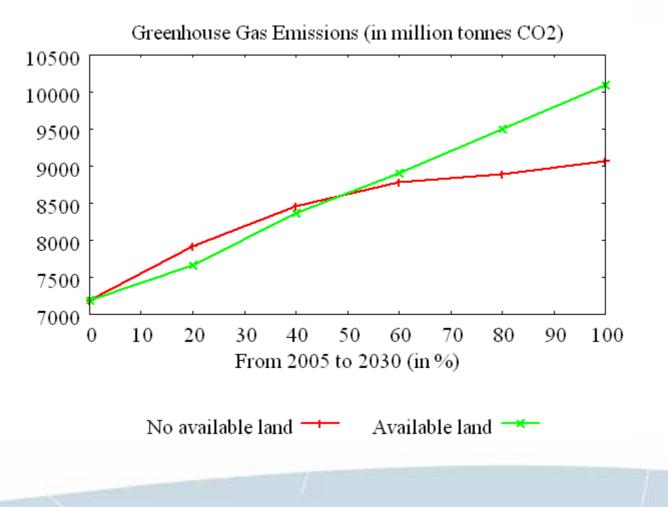

a) WITH additional land (explicit supply function)


b) WITOUT additional land


+ avoided deforestation

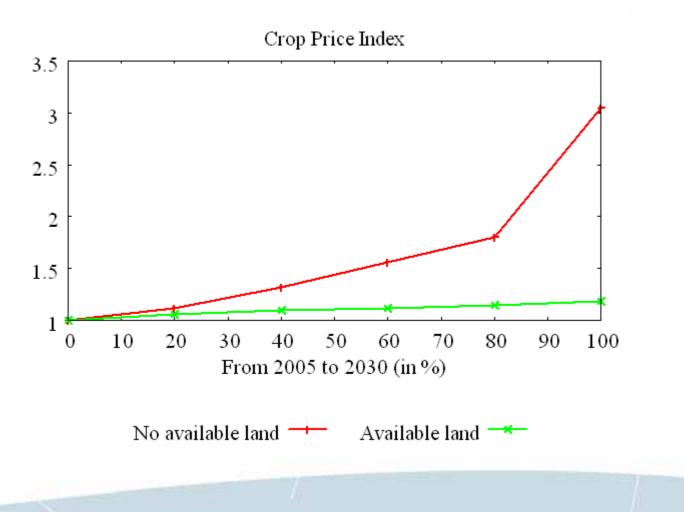


Ethanol Consumption

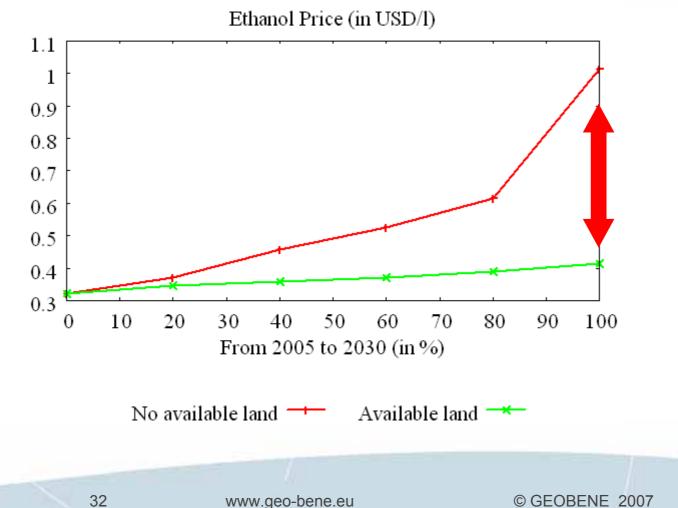

GEOBENE

Water Use

www.geo-bene.eu



www.geo-bene.eu


www.geo-bene.eu

© GEOBENE 2007

6

III. Illustrative application

GEOBENE

www.geo-bene.eu

Land availability uncertainty is a USD 350 billion Gas bill Question in the scenario

www.geo-bene.eu

© GEOBENE 2007

33

Before

www.geo-bene.eu

After

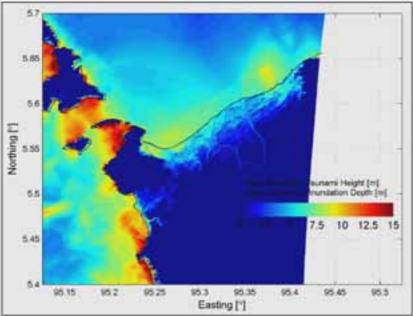
35

www.geo-bene.eu

© GEOBENE 2007

67

Specific Example: Field survey vs. aerial survey


	Terrestrial Mapping	Aerial Photogrammetry (Digital)
Cost	100 USD/ha	12-14 USD/ha
Manpower	5 ha/day/team	50,000 ha/yr/company
Damaged Area	300,000 ha	300,000 ha
Time	1 team = 164 years	1 company = 6 years
	1000 teams = 2 months	10 companies = 6 months
Total Cost	26.3 million USD	3.6 million USD

Source: K. Wikantika

Value of Geo-Information for deep sea fishing

Source: Sea Defense Consultants

37

Methodology: States and actions related to an Early Warning System for Tsunami detection and avoidance

States of nature:

An undersea earthquake occurs & causes a Tsunami An undersea earthquake occurs but causes no Tsunmai

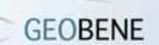
Potential actions:

Based on information from EWS, evacuate people. Based on information from EWS, take no action.

The methodology outlined above is described in detail in Hirshleifer and Riley (1979), Schimmelpfennig and Norton (2003) and Bouma et al., (submitted 2008). This technique is also applied in this study.

38

www.geo-bene.eu

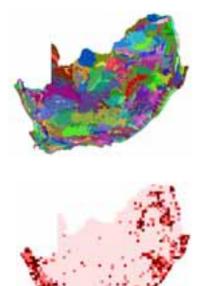


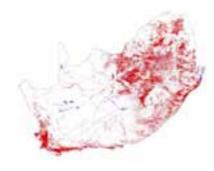
Pay-off Matrix (Java 2006)

	Evacuate	No Evacutation	Prior	Likelihood	Likelihood
				Evacuate	No Evacuation
Tsunami	50 Mil	138 Mil	.99	.9	.1
No Tsunami	5 Mil	0	.1	.75	.25

- Creating these for a variety of Tsunami Scenarios/regions
- Comparing then costs to a variety of proposed EWSs

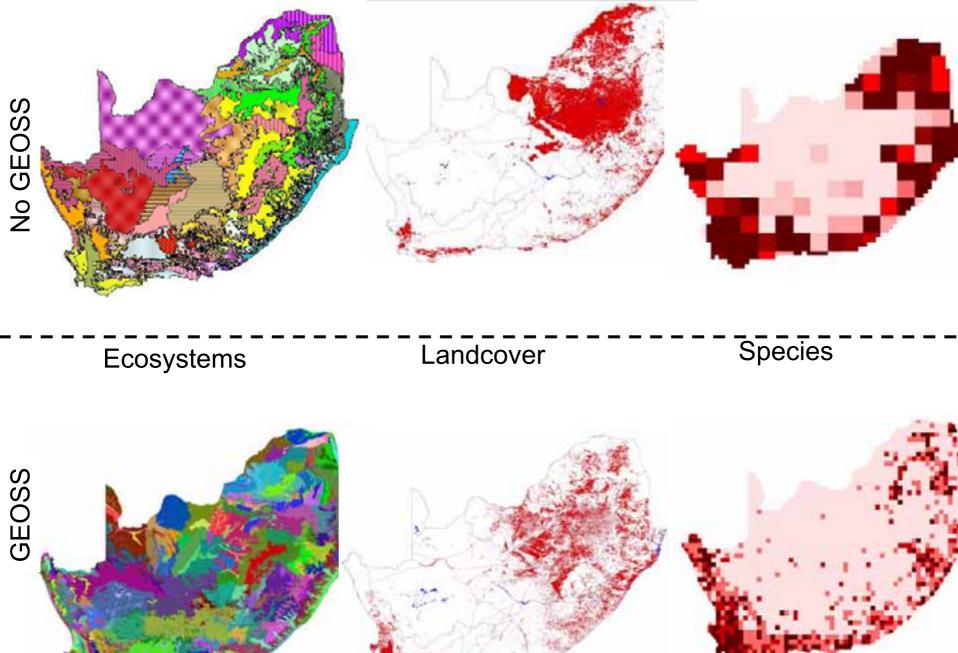
Example: Added Value of remote sensing information for water quality in the North Sea Stakeholder surevey

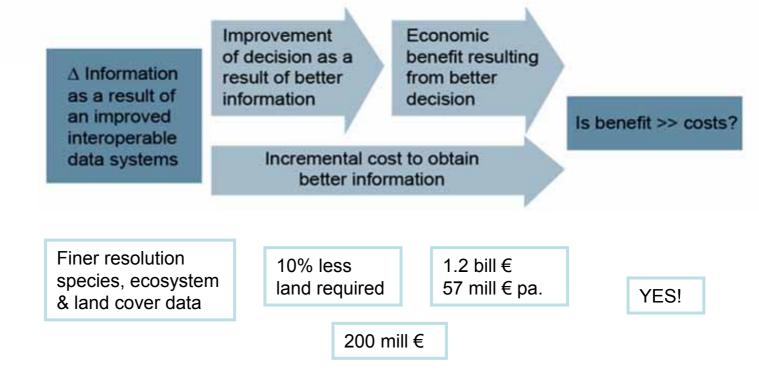

	Eutrophication		Excessive algal bloom		Sea water clarity	
	Present	With GEO	Present	With GEO	Present	With GEO
Expectation of water quality being well monitored	63%	75%	50%	73%	26%	69%
Range in answers	50-100%	80-100%	10-90%	50-100%	10-50%	20-90%


Source: Bouma and Van der Woerd (2007)

Investment Costs: investment of the dutch government to launch the ENVISAT satellite is 2.5 million a year Benefits: for water quality managment (including economic benefits to the fishing industry) in the North Sea can be up to 2.6 million a year

Benefit chain & conservation planning An introduction to conservation planning



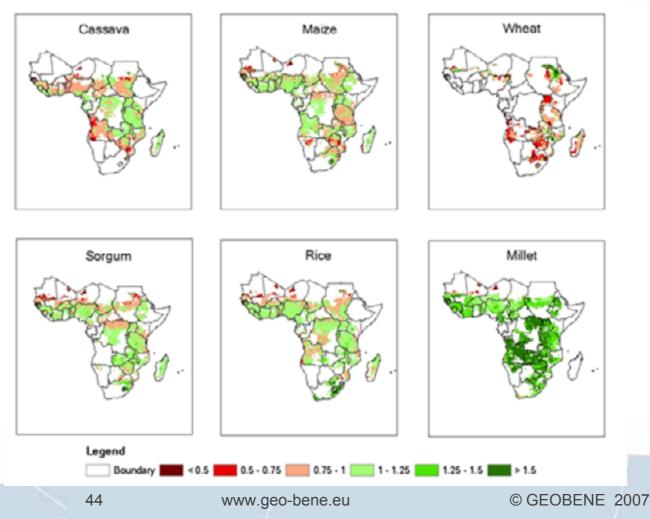

Things to avoid

Things to conserve & how much of them to conserve

Where to conserve

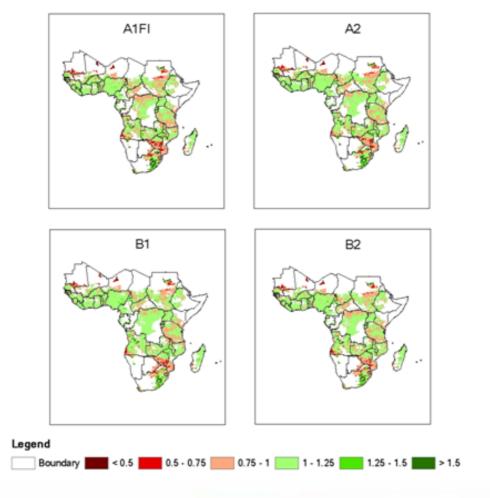
Based on costs of land acquisition & management

Based on costs GEOSS type data

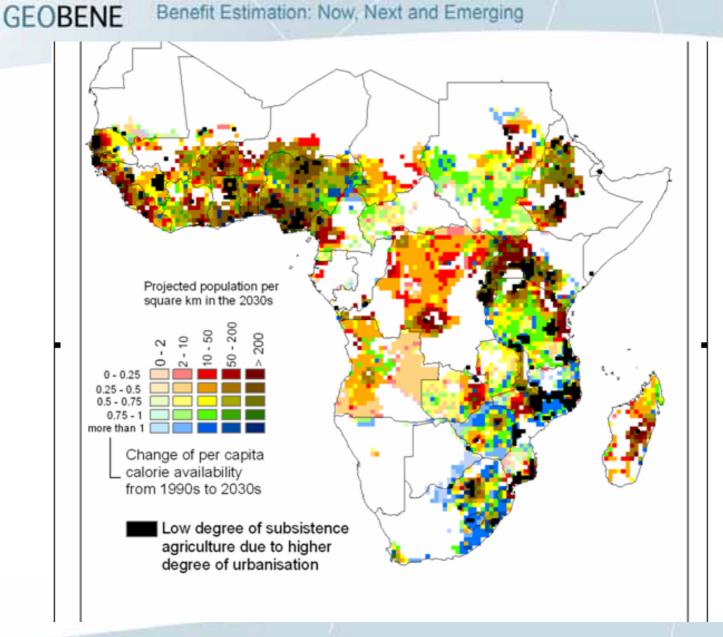


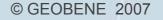
www.geo-bene.eu

GEOBENE

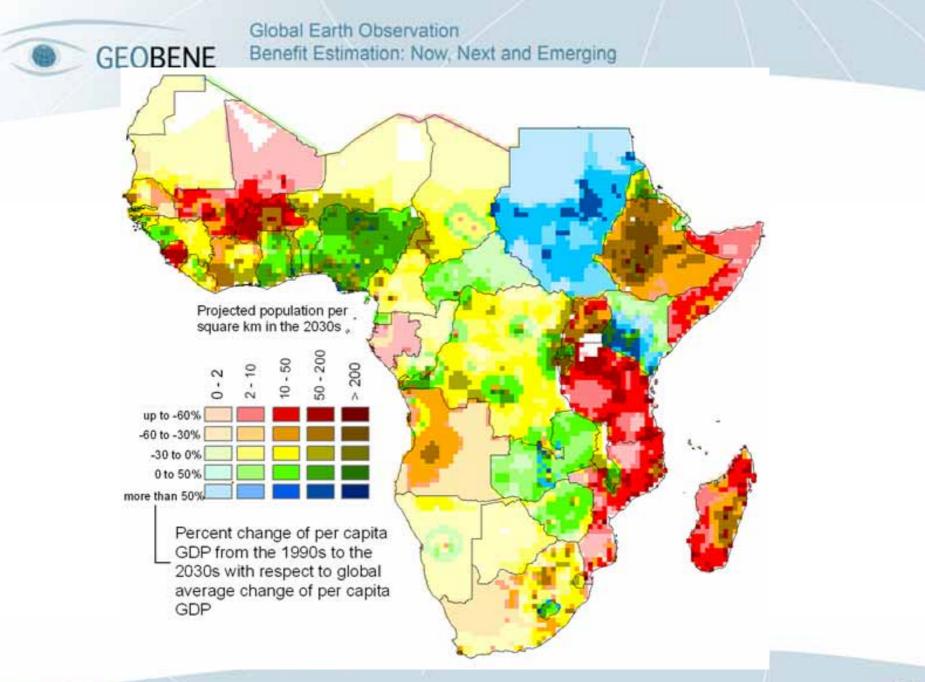

Example Integration of socioeconomic with biophysical data, Food security in SSA

Projected changes in crop yield between 2000-2030

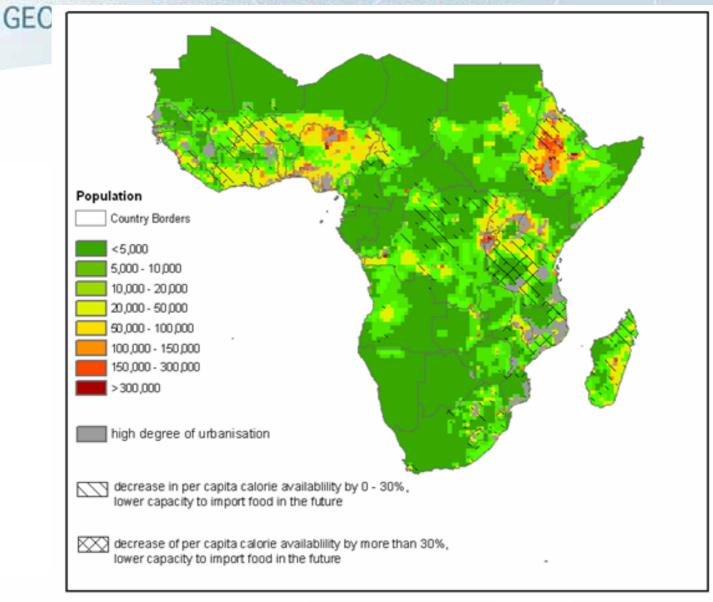

Overall projected changes in crop yield between 2000-2030


45

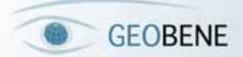
GEOBENE



46



47



Global Earth Observation

48

Thank you!

For further questions Steffen Fritz IIASA fritz@iiasa.ac.at

49

www.geo-bene.eu

