

Topographic correction of satellite images for improved LULC classification in mountainous areas

P Füreder Centre for Geoinformatics

UN/Austria/ESA Symposium, 11 September 2008 Graz, Austria

Outline

- Introduction
- Study area
- Topographic correction methods
- Data and Implementation
- Results
 - visual
 - statistical
 - effect on image segmentation
 - result of classification
- Constraints

ZGIS

Conclusion and Outlook

(AS)

Introduction

- irregular shape of terrain causes variable illumination angles and thus diverse reflection values within one land cover type
 ⇒ lower reflection values in shadow, higher values in sun
- reflection values of different land cover types in equal conditions of illumination can be more similar than within one land cover type in shadow and sun
- ⇒ problems in image segmentation
 and possible misclassifications
- topographic normalization methods try to compensate topographically induced illumination variations

effect of relief on illumination

ZGIS

Study area

- defined within the project BrahmaTWinn (http://www.brahmatwinn.uni-jena.de)
- located as part of the Brahmaputra catchment in Tibet - represents the catchment of the Lhasa River
- a major part of the area is situated in the prefecture-level city Lhasa, a minor part in the prefecture Naqu
- total area: about 33.000 km²

- mountainous area with steep slopes and rugged terrain and elevations from 3.500 to more than 7.000 meters
 - ⇒ significant shadowing effects

Topographic correction methods

• **Band ratio:** simplest method

- relative topographic effect is similar in all bands
- diffuse irradiance neglected, loss of spectral resolution
- real topographic correction methods try to model illumination characteristics of a horizontal surface by means of a **DEM**
- calculation of the local solar incident angle (i) = angle between the current position of the sun (depending on solar zenith angle and solar azimuth) and the local surface (terrain slope and aspect)

 $\cos i = \cos e \ \cos z + \sin e \ \sin z \ \cos (a-a')$

• $\cos i < 0 \rightarrow$ shadowed slopes

Topographic correction methods

Lambertian methods

- surface reflects irradiation in all directions equally
- only direct irradiance considered

Albertz, 2001

Non-Lambertian methods

- diffuse irradiance is modeled by means of constants
- wavelength dependent ⇒ assessment of the constants for each band separately
- reflection characteristics depending on land cover ⇒ individual constants for each land cover

Topographic correction methods

cosine correction

- Lambertian assumption
- diffuse irradiance is neglected
- strong overcorrections for steep and sun-averted slopes
- frequently used

$$L_H = L_T \times \frac{\cos z}{\cos i}$$

where

- L_H = reflectance of a horizontal surface
- L_T = reflectance of an inclined surface
- z =solar zenith angle
- *i* = local solar incident angle
- Minnaert correction, C-correction
 - non-Lambertian assumption
 - extend formula of cosine correction by constants

Statistic-empirical correction

- regression-based approach
- contains average reflectance of land cover type under investigation

Data

200 kr

Satellite data

5 Landsat TM scenes

- 30 m spatial resolution
- UTM WGS 84, Zone 46 North
- cloud cover: 0 %
- acquisition date differ according to year and season

path / row	acquisition date
137/038	14 September 1988
137/039	14 September 1988
137/040	01 November 1990
138/039	14 September 1991
138/040	14 November 1990

Datasource Z GIS Created by: Petra Füreder, September 2007

ZGIS

Data

Digital Elevation Model (DEM)

SRTM (Shuttle Radar Topography Mission)

- 90 m spatial resolution
- resampled to spatial resolution of Landsat images for improved topographic normalization (by bilinear interpolation)

Value High : 7093

Low : 3535

Ζ

(AS

Implementation

Software Programs

- **ERDAS** Imagine
 - cosine correction
 - Minnaert correction \Rightarrow **no** automated calculation of constant k

user interface of **ERDAS** Imagine

PG-Steamer

- PG-Steamer
 - cosine correction
 - Minnaert correction \Rightarrow **no** automated calculation of constant k
 - C-correction \Rightarrow automated calculation of constant c
 - statistic-empirical correction ⇒ input of average reflectance from each land cover type required

Centre for Geoinformatics, Salzburg University - " petra.fuereder@sbg.ac.at

Centre for Geoinformatics, Salzburg University – 🕆 petra.fuereder@sbg.ac.at

before topographic normalization

after topographic normalization (statistic-empirical correction)

Centre for Geoinformatics, Salzburg University - 🕆 petra.fuereder@sbg.ac.at

Effect on image segmentation

ZGIS

original

topographic normalized

Centre for Geoinformatics, Salzburg University – 🕆 petra.fuereder@sbg.ac.at

Object based image classification

- spectral values, standard deviation, shape, neighborhood
- additional data: SRTM (slope, altitude)

ZGIS

Results

Statistical Analysis

requirements

- low spectral differences
- shady slopes should get higher values, sunny slopes lower values
- decrease of spectral variances and standard deviation
- retention of mean
- worst result: cosine correction
- best result: statistic-empirical correction

band	cosine correction		statististic-empirical correction		C-correction		Minnaert-correction	
	μ	σ	μ	σ	μ	σ	μ	σ
1	32.76	13.63	-0.59	-0.61	1.34	-0.03	0.36	0.87
2	16.39	7.79	-0.55	-0,6	0.96	0.2	0.56	0.65
3	19.4	7.53	-0.58	-1.07	1.75	0.11	1.5	0.58
4	28.09	11.02	-0.58	-1.54	2.2	-0.58	2.08	-0.14
5	37.22	9.74	-0.61	-3.48	4.72	-1.91	0.85	-1.12
7	17.8	5.32	-0.57	-1.85	2.49	-0.74	1.06	-0.15
total change	151.66	55.03	-3.48	-8.55	13.46	-2.95	6.41	0.69

Centre for Geoinformatics, Salzburg University – 🕆 petra.fuereder@sbg.ac.at

Constraints

Constraints

cast shadow

- cast shadow of surrounding topographic features is **not** considered within topographic normalization
- reflection values of sun-facing slopes lying in cast shadow are corrected **downwards**
- line-of-sight algorithm can detect areas of cast shadow

Centre for Geoinformatics, Salzburg University - 1 petra.fuereder@sbg.ac.at

Conclusion

- cosine correction could not reduce topographic effect in the study area successfully
- satisfying results of C-correction, Minnaert correction and statistic-empirical correction
 - ⇒ only minor visual differences
- overcorrection in areas of low illumination due to
 - inadequate estimation of the diffuse irradiance
 - inaccurate geometric correction
 - insufficient spatial resolution of the DEM ⇒ availability of high resolution DEMs is limited

IS'

Outlook

- topographic normalization should be applied to each land cover type separately
 - requires knowledge of land cover in advance
 - time consuming
 - easier: divide image according to NDVI (e. g. vegetated / non-vegetated)
- topographic normalized satellite images can obtain better classification results
- topographic normalization is still rarely used due to lack of standardized methods

Thank you for your attention!

Contact: petra.fuereder@sbg.ac.at

