United Nations/Moldova/United States of America Workshop on the Applications of Global Navigation Satellite Systems

Application of Global Positioning System in Natural Disaster Studies

17 - 21 May 2010, Chisinau, Moldova,

Armenia

Presented by: Saida Salahova – Engineering Consulting Technologies LLC/ Azerbaijan National Aerospace Agency, Rustam B. Rustamov – Institute of Physics National Academy of Sciences

coloos Gapale

CONTENT

- Introduction
- Method
- Key Findings
- Space Image Processing
- Field measurements
- Conclusion

INTRODUCTION

- Integration of information systems, satellites imaging systems and improved software technologies
- Development database using the remote sensing methods and GIS technology for access to resources and opportunities of prediction, reduction of natural risk
- Project titled "Application of Remote Sensing and GIS Technology to Reduce Flood Risk" ProVention Consortium in association with the University of Wisconsin-Madison, Disaster Management Centre within the programme "Research and Action Grants for Disaster Risk Reduction".

Natural Disaster Impacts:

- Landslides
- Floods
- Earthquakes
- Fires
- Raising of the Caspian Sea Coastal Line
- Others.

United Nations/Moldova/United States of America Workshop 500km 100 200 300 400 0 Novorossiysk BULGARIA BLACK SEA CASPIAN GEORGIA Toilisi Istanbul Baku ACG TURKMENISTAN ARMENIA AZERBAIJAN Shah Ankara G Deniz Erzurum Turkish NAKHICHEVAN NREP (Northern Route Straits Export Pipeline) oil TURKEY --- NREP (Transneft existing owned and operated) WREP (Western Route IRAN Export Pipeline) oil BTC (Baku - Tbilisi Ceyhan - Ceyhan) oil SCP (South Caucasus proposed Pipeline) gas RAQ SCP (Turkish owned MEDITERRANEAN SEA SYRIA and operated) CYPRUS

ADVANTAGES

The large covering area;

Sufficiently high accuracy data;

Investigation of the inaccessibility areas;

□More flexibility of process dynamic changes;

Other

METHOD

- □ The use of ALOS space imagery to be created the land use / land cover basic map for the investigated area using urban, agriculture, garden, scrub, open area, river, stream, canal, road, railroad basic classes;
- □ The use of Landsat ETM space imagery to be detected potential flood inundation areas within the Kura River watershed in the Salyan district of Azerbaijan using a tasseled cap transformation;
- □ The derive 1 m Digital Elevation Model (DEM) from contour lines and elevation points of the investigated area to be generated a deterministic model of potential inundated areas for the region using the DEM and a convex-areas surface;
- □ The evaluate the sensitivity of each approach to be characterized the flood inundations through statistical tests involving comparison of flooding areas extracted from an inventory of soils and a geomorphology maps.

KEY FINDINGS

□ Space technologies are to develop of an advance tool for monitoring, data collection, data processing, review and report on progress and challenges in the implementation of disaster risk reduction and recovery actions undertaken at the national level.

□ As a further step a wide scale of river monitoring is required for successful and effectively forecasting, preparedness and reduces of the natural disaster impact.

Awareness information program of this hazard has to be developed and implemented in order to safe the human life, properties as well as to reduce disaster damage impacts.

□ Potential flood inundation areas can by identified by satellite imagery and ground-based measurements.

□ The mapping of potential flood areas can help for further settlement planning in this region.

SPACE IMAGE PROCESSING

- 1. Urban or Built-up Land
- 2. Agricultural Land
- 3. Garden
- 4. Scrub
- 5. Open area
- 6. River
- 7. Stream
- 8. Canal
- 9. Road
- 10. Railroad

Topographic map

Selected area of ALOS AVNIR-2 image

>Image of LANDSAT

Potential flood inundation areas based on wetness index

Digital Elevation Model of the selected area with high points and isolines

Forecasting of the potentially flood inundation areas

Potential flood inundation areas derived from the DEM-based surfaces for -22.0 m level

RF - Zones reflect potentially flood areas

Field trips implementation using GPS

Field trip Ground Control Points

Ground Control Points

Ground Control Points

3D modified view of the selected area

Developing GIS

Detailing leveling of Kura river

2003	Level, m	Water exp, m3/s	2004	Level, m	Water exp, m3/s	2005	Level, m	2007	Level, m	Water
Aprel - May			May			May		May		exp, m3/s
07.04.2003	4,61	975	05.05.2004	4,20	855	06.05.2005	3,76	14.05.2007	4,45	780
08.04.2003	4,71	1130	06.05.2004	4,20	855	07.05.2005	3,60	15.05.2007	4,71	930
09.04.2003	4,79	1166	07.05.2004	4,28	920	08.05.2005	3,46	16.05.2007	4,90	1140
10.04.2003	4,90	1300	08.05.2004	4,60	980	09.05.2005	3,40	17.05.2007	5,36	1264
11.04.2003	5,02	1280	09.05.2004	4,80	1015	10.05.2005	3,27	18.05.2007	5,40	1280
12.04.2003	5,12	1330	10.05.2004	4,85	1050	11.05.2005	3,08	19.05.2007	5,63	1475
13.04.2003	5,19	1490	11.05.2004	4,80	1045	12.05.2005	2,95	20.05.2007	5,85	1585
14.04.2003	5,39	1570	12.05.2004	4,80	1045	13.05.2005	2,80	21.05.2007	5,99	1660
15.04.2003	5,48	1530	13.05.2004	4,80	1045	14.05.2005	2,67	22.05.2007	6,15	1735
16.04.2003	5,44	1480	14.05.2004	4,79	1045	15.05.2005	2,63	23.05.2007	6,31	1715
17.04.2003	5,40	1430	15.05.2004	4,80	1045	16.05.2005	2,51	24.05.2007	6,33	1725
18.04.2003	5,36	1480	16.05.2004	4,80	1045	17.05.2005	2,60	25.05.2007	6,25	1785
19.04.2003	5,33	1510	17.05.2004	4,90	1080	18.05.2005	2,92	26.05.2007	6,05	1635

CONCLUSION

The main target has been undertaken to assist the local authorities to build useful database in disaster risk reduction in particularly for the selected area with a more sensitively part of country in point of view the river flood.

In the meantime has been demonstrated a contribution of the possibility and advantage of remote sensing methods and GIS technology use based on space image data collection and data processing for application of similarity problem solving

*It has been demonstrated of use of GPS system during field measurements for identification of dynamic change processes in case of space image eliminations.

Thank you for attention!

