Fundamental Physics for and in space

Claus Lämmerzahl

Center for Applied Space Technology and Microgravity (ZARM) University of Bremen

UN/Malaysia Expert Meeting on Human Space Technology Kuala Lumpur, Malaysia, November 14 – 18, 2011

C. Lämmerzahl (ZARM, Bremen)

C. Lämmerzahl (ZARM, Bremen)

Fundamental Physics on the ISS

Kula Lumpur, 14.11.2011 2

Bremen: largest aerospace location in Germany

Companies

- Astrium (Columbus module, thruster of Ariane, cryogenic upper stage of Ariane)
- OHB Systems (Galeileo, ...)
- Airbus
- New DLR–Institute for Space Systems
- University: ZARM
 - participation in many space projects (MICROSCOPE, LPT, LISA, ...)
 - many microgravity-activities (drop tower, ESA TT, cold atoms, ...)
 - cooperations with DLR, PTB, CNES, ONERA, NASA, JPL, ...
 - education
- Space Conferences
 - IAC 2003
 - Quantum to Cosmos 2007 & 2009
 - COSPAR 2010

Bremen science history related to space

Johann Hieronymus Schröter 1745 — 1816

- largest observatory in Europe
- founded Astronomical Society

Wilhelm Heinrich Olbers 1758 — 1840

 founder of modern cosmology

Friedrich Wilhelm Bessel 1784 — 1846

- Bessel ellipsoid
- flattening of Earth
- test of Equivalence Principle

C. Lämmerzahl (ZARM, Bremen)

1 Introduction

- Main physical quests
- Space conditions
- Technologies

1 Introduction

- Main physical quests
- Space conditions
- Technologies
- 3 Selection of projects and proposals
 - Testing the UFF
 - Clocks: Testing the UGR
 - Cold atoms in space
 - Condensed matter phenomena

1 Introduction

- Main physical quests
- Space conditions
- Technologies
- 3 Selection of projects and proposals
 - Testing the UFF
 - Clocks: Testing the UGR
 - Cold atoms in space
 - Condensed matter phenomena
 - More science with benefit from microgravity

1 Introduction

- Main physical quests
- Space conditions
- Technologies
- 3 Selection of projects and proposals
 - Testing the UFF
 - Clocks: Testing the UGR
 - Cold atoms in space
 - Condensed matter phenomena
 - More science with benefit from microgravity
- 5 Further applications

1 Introduction

- Main physical quests
- Space conditions
- Technologies
- 3 Selection of projects and proposals
 - Testing the UFF
 - Clocks: Testing the UGR
 - Cold atoms in space
 - Condensed matter phenomena
 - More science with benefit from microgravity
- 5 Further applications
- 5 Summary and Outlook

1 Introduction

Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies
- 3 Selection of projects and proposals
 - Testing the UFF
 - Clocks: Testing the UGR
 - Cold atoms in space
 - Condensed matter phenomena
- 4 More science with benefit from microgravity
- 5 Further applications
- 6 Summary and Outlook

C. Lämmerzahl (ZARM, Bremen)

We talk

- about physics not medicine, biology, chemistry, geology, engineering, ...
- about fundamental physics not material sciences, electronics, environmentel physics, or other applied physics areas
- about gravitational physics, quantum mechanics, particle physics, statistical physics, quantum optics,

under the condition of

• free fall = microgravity

why?

- in microgravity one can perform experiments which are not possible on ground
- this opens up a new experimental parameter space

We talk

- about physics not medicine, biology, chemistry, geology, engineering, ...
- about fundamental physics not material sciences, electronics, environmentel physics, or other applied physics areas
- about gravitational physics, quantum mechanics, particle physics, statistical physics, quantum optics,

under the condition of

• free fall = microgravity

why?

- in microgravity one can perform experiments which are not possible on ground
- this opens up a new experimental parameter space

We talk

- about physics not medicine, biology, chemistry, geology, engineering, ...
- about fundamental physics not material sciences, electronics, environmentel physics, or other applied physics areas
- about gravitational physics, quantum mechanics, particle physics, statistical physics, quantum optics,

under the condition of

• free fall = microgravity

why?

- in microgravity one can perform experiments which are not possible on ground
- this opens up a new experimental parameter space

We talk

- about physics not medicine, biology, chemistry, geology, engineering, ...
- about fundamental physics not material sciences, electronics, environmentel physics, or other applied physics areas
- about gravitational physics, quantum mechanics, particle physics, statistical physics, quantum optics,

under the condition of

• free fall = microgravity

why?

- in microgravity one can perform experiments which are not possible on ground
- this opens up a new experimental parameter space

We talk

- about physics not medicine, biology, chemistry, geology, engineering, ...
- about fundamental physics not material sciences, electronics, environmentel physics, or other applied physics areas
- about gravitational physics, quantum mechanics, particle physics, statistical physics, quantum optics,

under the condition of

• free fall = microgravity

why?

- in microgravity one can perform experiments which are not possible on ground
- this opens up a new experimental parameter space

Introduction

Fundamental Physics

Two statements about Fundamental Physics:

What today is Fundamental Physics tomorrow is applied physics.

Introduction

Fundamental Physics

Two statements about Fundamental Physics:

- What today is Fundamental Physics tomorrow is applied physics.
- Physical and technological revolutions are beyond criteria like "return of investment". Such requirements will kill substantial developments.
 Example: At the development of General Relativity applications like GPS and TAI could not be foreseen.

Introduction

Fundamental Physics

Two statements about Fundamental Physics:

- What today is Fundamental Physics tomorrow is applied physics.
- Physical and technological revolutions are beyond criteria like "return of investment". Such requirements will kill substantial developments.
 Example: At the development of General Relativity applications like GPS and TAI could not be foreseen.

discussion partially based on an ESA TT *Fundamental Physics on the ISS* chaired by H. Dittus & C.L.

1 Introduction

Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies

3 Selection of projects and proposals

- Testing the UFF
- Clocks: Testing the UGR
- Cold atoms in space
- Condensed matter phenomena
- 4 More science with benefit from microgravity
- 5 Further applications
- 6 Summary and Outlook

1 Introduction

- Main physical quests
- Space conditions
- Technologies
- 3 Selection of projects and proposals
 - Testing the UFF
 - Clocks: Testing the UGR
 - Cold atoms in space
 - Condensed matter phenomena
- 4 More science with benefit from microgravity
- 5 Further applications
- 6 Summary and Outlook

Structure of standard physics

All aspects of Lorentz invariance are experimentally well tested and confirmed

Foundations

Postulates

- $\bullet \ c = const$
- Principle of Relativity

All aspects of Lorentz invariance are experimentally well tested and confirmed

Foundations

Postulates

- c = const
- Principle of Relativity

Tests

- Independence of *c* from velocity of the source
- Universality of c
- Isotropy of c
- Independence of c from velocity of the laboratory
- Time dilation
- Isotropy of physics (Hughes–Drever experiments)
- Independence of physics from the velocity of the laboratory

Many aspects of the Universality of Free Fall are experimentally well tested and confirmed

Postulate

In a gravitational field all structureless test particles fall in the same way

Many aspects of the Universality of Free Fall are experimentally well tested and confirmed

Postulate

In a gravitational field all structureless test particles fall in the same way

Tests

UFF for

- Neutral bulk matter
- Charged particles
- Particles with spin
- No test so far for
 - Anti particles

Many aspects of the Universality of the Gravitational Redshift are experimentally well tested and confirmed

Postulate

In a gravitational field all clocks behave in the same way

Many aspects of the Universality of the Gravitational Redshift are experimentally well tested and confirmed

Postulate

In a gravitational field all clocks behave in the same way

Tests

UGR for

- Atomic clocks: electronic
- Atomic clocks: hyperfine
- Molecular clocks: vibrational
- Molecular clocks: rotational
- Resonators
- Nuclear transitions
- No test so far for
 - Anti clocks

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

₩

Implication

Gravity is a metrical theory

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- I ocal I orentz Invariance

Implication

Gravity is a metrical theory

Predictions for metrical theory

- Solar system effects
 - Perihelion shift
 - Gravitational redshift
 - Deflection of light
 - Gravitational time delay
 - Lense–Thirring effect
 - Schiff effect
- Strong gravitational fields
 - Binary systems
 - Black holes
- Gravitational waves

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

Implication

Gravity is a metrical theory

Predictions for metrical theory

- Solar system effects
 - Perihelion shift
 - Gravitational redshift
 - Deflection of light
 - Gravitational time delay
 - Lense–Thirring effect
 - Schiff effect
- Strong gravitational fields
 - Binary systems
 - Black holes
- Gravitational waves

 \downarrow

General Relativity

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

\Downarrow

Implication

Gravity is a metrical theory

Predictions for metrical theory

- Solar system effects
 - Perihelion shift
 - Gravitational redshift
 - Deflection of light
 - Gravitational time delay
 - Lense–Thirring effect
 - Schiff effect
- Strong gravitational fields
 - Binary systems
 - Black holes
- Gravitational waves

 \Downarrow

The present situation

Today's standard theories

Frame theories	Interactions
Quantum theory	Electrodynamics
Special Relativity	Gravity
General Relativity	Weak interaction
Statistical mechanics	Strong interaction
Problems	Wish
 Incompatibility of quantum 	Unification of all interactions
theory and General Relativity	
 Problem of time 	
 Occurrence of singularities 	

Need of modifications of standard theories, but standard theories derived from observations

 \Rightarrow need for larger domain of experience = larger parameter space,

other observations, more precise measurements

Search for new physics

- standard theories are derived from validity of Einstein Equivalence Principle
- due to unresolved fundamental inconsistencies standard physics cannot be completely correct
- \Rightarrow There have to be modifications to standard physics

Most important possible modifications

- Modifications in Maxwell, Dirac, Einstein equations
 - \Rightarrow Violation of Einstein Equivalence Principle
 - \Rightarrow Search for violations of the Einstein Equivalence Principle
- Space-time fluctuations space-time foam
 - \Rightarrow Violation of Einstein Equivalence Principle
 - \Rightarrow Decoherence, spreading of wave packets, higher order derivatives, ... \Rightarrow Fundamental noise (holographic noise)
- Time–dependence of constants

Other modifications can also be well justified

Summary: Main quests

Most hot topics in Fundamental Physics

- Laboratory physics
 - Universality of Free Fall
 - Universality of the Gravitational Redshift
 - Local Lorentz Invariance
 - time dependence of constants
 - Newton at small scales
- Astrophysics/cosmology
 - Dark Matter
 - Dark Energy
- all has to do with gravity

Main physical quests

One application: Metrology

Metrology

Systematics: How to choose space projects

The conditions for space projects

Systematics: How to choose space projects

The conditions for space projects

Outline

Fundamental physics under microgravity conditions

- Space conditions

Space conditions

- Large differences in the gravitational potential
- Large velocities
- Large distances

Free fall

Quiet environment

Space conditions

- Large differences in the gravitational potential
 - Necessary for testing UGR
 - Necessary for measurement of absolute gravitational redshift with clocks
- Large velocities
 - Necessary for testing Doppler effect
- Large distances
 - Necessary for gravitational wave detection (LISA)
 - Necessary for measuring gravitat. potential at large distances or weak gravity (Pioneer, MOND, dark matter vs modified gravity)
- Free fall
 - Long exposure to small forces: tests of UFF and tests of non–Newtonian gravity at short distances
 - Good environment to make ultracold BECs
 - Long free evolution time of quantum systems
 - Necessary to test Newton's law for small accelerations
- Quiet environment
 - Disentanglement from seismic noise
 - More flexibility to vary experimental parameters

Microgravity environments

platform	μg –quality	μg –duration
drop tower	$\geq 10^{-6}$	4.7 d for drops
		9.2 s for catapult mode
parabolic flights	$\geq 10^{-2}$	20 s
ballistic rockets	$\geq 10^{-5}$	6 min
ISS	$\geq 10^{-3}$	days to months
satellite	$\geq 10^{-6}$	days to years

Fundamental physics under microgravity conditions Space conditions

Bremen Drop Tower of ZARM

Tower 146 m

drop tube 110 m

free fall time = 4.7 s

deceleration \sim 30 g

C. Lämmerzahl (ZARM, Bremen)

Fundamental Physics on the ISS

Kula Lumpur. 14.11.2011

Fundamental physics under microgravity conditions Space conditions

Bremen Drop Tower of ZARM

27 / 73

C. Lämmerzahl (ZARM, Bremen)

Fundamental Physics on the ISS

Kula Lumpur, 14.11.2011

Systematics: How to choose space projects

The conditions for space projects

Systematics: How to choose space projects

The conditions for space projects

Outline

Fundamental physics under microgravity conditions

- Technologies

Experimental / technological quests

In order improve the experiments one needs in general (for space as well as for laboratory experiments)

• very precise clocks, optical clocks with accuracy of 10^{-18}

- very precise length standards
- new definition of mass

high precision needs - quantum mechanics - quantum optics

- detection of tiny forces, tiny interactions
- Satellite attitude and orbit control

Experimental / technological quests

In order improve the experiments one needs in general (for space as well as for laboratory experiments)

- $\, \bullet \,$ very precise clocks, optical clocks with accuracy of 10^{-18}
 - lasers
 - optical resonators
 - frequency comb
- very precise length standards
 - lasers
- new definition of mass
 - Josephson effect (quantum effect)
 - heigh precision mashinig
- detection of tiny forces, tiny interactions
 - SQUIDS
 - matter wave interferometry (atom, molecule, BEC)
- Satellite attitude and orbit control
 - microthrusters
 - drag free control

high precision needs – quantum mechanics – quantum optics

Experimental / technological quests

In order improve the experiments one needs in general (for space as well as for laboratory experiments)

- $\, \bullet \,$ very precise clocks, optical clocks with accuracy of 10^{-18}
 - lasers
 - optical resonators
 - frequency comb
- very precise length standards
 - lasers
- new definition of mass
 - Josephson effect (quantum effect)
 - heigh precision mashinig
- detection of tiny forces, tiny interactions
 - SQUIDS
 - matter wave interferometry (atom, molecule, BEC)
- Satellite attitude and orbit control
 - microthrusters
 - drag free control

high precision needs – quantum mechanics – quantum optics

Clocks in space

Positioning

- $\bullet\,$ special relativistic time dilation $\sim 4\,$ km/day
- $\, \bullet \,$ gravitationl redshift $\sim 10 \; \text{km/day}$

today's clocks are such precise so that they can "see" 30 cm height difference (later they will "see" 1 cm height difference)

relativistic gravitation = General Relativity is applied science

in order to have a well defined Temps Atomique International TAI one needs clocks in space

Technologies

Science and missions

RM

Outline

1 Introduction

2 Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies

3 Selection of projects and proposals

- Testing the UFF
- Clocks: Testing the UGR
- Cold atoms in space
- Condensed matter phenomena

4 More science with benefit from microgravity

- 5 Further applications
- 6 Summary and Outlook

C. Lämmerzahl (ZARM, Bremen)

Outline

1 Introduction

2 Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies

Selection of projects and proposals

- Testing the UFF
- Clocks: Testing the UGR
- Cold atoms in space
- Condensed matter phenomena
- 4 More science with benefit from microgravity
- 5 Further applications
- 6 Summary and Outlook

MICROSCOPE: The Mission

- French space mission with participation of CNES, ESA, ZARM and PTB
- Mission goal: Test of Equivalence Principle with an accurary of $\eta = 10^{-15}$
- Mission overview:
 - Micro-satellite of CNES Myriade series
 - Drag–free satellite
 - Sun–synchronous orbit
 - Altitude about 800 km
 - Mission lifetime of 1 year
- Payload:
 - Two high-precision capacitive differential accelerometers
 - Science sensor: Ti and Pt test mass
 - Reference sensor: two Pt test masses
- Test of accelerometers at ZARM drop tower

MICROSCOPE: Mission Modeling

Simulation tool HPS (High Performance Satellite Dynamics Simulator)

- Cooperation project of ZARM and the DLR Institute of Space Systems
- Modular design with user interface Matlab/Simulink
- Feature: Modeling of disturbances due to surface forces by means of finite elements

Outline

1 Introduction

2 Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies

Selection of projects and proposals

- Testing the UFF
- Clocks: Testing the UGR
- Cold atoms in space
- Condensed matter phenomena
- 4 More science with benefit from microgravity
- 5 Further applications
- 6 Summary and Outlook

Clocks: Pharao

Based on Ramsey scheme with very slow atoms: interrogation of atoms after a long free evolution time

only possible in space

C. Lämmerzahl (ZARM, Bremen)

Clocks: Pharao

Science objectives

- Stability 10^{-16}
- Measuring gravitational redshift
- Clock clock comparison: universality of gravitational redshift
- Time-dependence of fine structure constant $\boldsymbol{\alpha}$
- Clock synchronization definition of TAI

Outline

1 Introduction

2 Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies

3 Selection of projects and proposals

- Testing the UFF
- Clocks: Testing the UGR
- Cold atoms in space
- Condensed matter phenomena
- 4 More science with benefit from microgravity
- 5 Further applications
- 6 Summary and Outlook

ATKAT (ATom-KATapult)

- first experimental demonstration of magneto-optical trap (MOT) with Rb atoms in microgravity at Bremen Drop Tower
- preliminary part of the QUANTUS project pursuing a Bose–Einstein– condensate (BEC) of Rb atoms in microgravity at the drop tower
- investigates feasibility of ultracold atoms in drop tower conditions
- probes frequency and power stability of laser system during capsule acceleration phase in the catapult system of the drop tower

Selection of projects and proposals Cold atoms in space

QUANTUS: BEC in microgravity

design of capsule

vacuum chamber

capsule
Selection of projects and proposals Co

Cold atoms in space

First BEC in microgravity / extended free fall

LU Hannover, ZARM, MPQ Munich, U Hamburg, HU Berlin, U Ulm

C. Lämmerzahl (ZARM, Bremen)

Fundamental Physics on the ISS

Kula Lumpur, 14.11.2011

44 / 73

BEC in microgravity - long free evolution

 10^4 atoms, 1 s free evolution time (not possible on ground) van Zoest et al, Science 2010

C. Lämmerzahl (ZARM, Bremen)

Cold atoms in snace

BEC in microgravity - long free evolution

 10^4 atoms, 1 s free evolution time (not possible on ground) van Zoest et al, Science 2010

C. Lämmerzahl (ZARM, Bremen)

Interference

Interference for long time of flight (at the moment > 0.6 s)

Interference

Interference for long time of flight (at the moment > 0.6 s)

Capability for long time observations of ultracold atoms

- BEC
- Phase shift
- Probability distribution

BEC in free fall

Status

- until now more than 300 drops
- BEC is created regularly
- extremely robust (survives $\sim 50\,g)$

Worldwide most advanced technology towards space application and fundamental quantum physics in μ g

Ongoing work

- PRIMUS (PRäzisions–Interferometrie mit Materiewellen Unter Schwerelosigkeit)
- FOKUS (FaserOptischer FrequenzKamm Unter Schwerelosigkeit)
- ATUS (Atom Interferometer Modeling)
- Fluctuations in Quantum Systems

In future

- Fundamental Physics experiments
- Drop tower Texus ISS
- Inertial sensors
- High precision clocks

FOKUS: Frequency Comb

New: Frequency comb in the Drop Tower (with MenloSystems)

• Atom interferometry with two atomic species to test the Equivalence Principle in the Quantum Domain

$$\delta\phi = \mathbf{k} \cdot \mathbf{g} \ T^2$$

- Frequency comb is used for high precision frequency comparison $\sim 10^{-18}$ with frequencies of ratios up to $10^5.$ Here
 - phaselinking two Raman laser systems
 - optical generation of highly stable microwave frequency
- First application of frequency comb in microgravity \Rightarrow pathfinder for future space based applications
 - optical clocks
 - cold atoms (interferometry)
 - interaction—free detection

FOKUS: Frequency Comb

New: Frequency comb in the Drop Tower (with MenloSystems)

• Atom interferometry with two atomic species to test the Equivalence Principle in the Quantum Domain

$$\delta \phi = rac{m_{
m g}}{m_{
m i}} \; m{k} \cdot m{g} \; T^2$$

- Frequency comb is used for high precision frequency comparison $\sim 10^{-18}$ with frequencies of ratios up to $10^5.$ Here
 - phaselinking two Raman laser systems
 - optical generation of highly stable microwave frequency
- First application of frequency comb in microgravity \Rightarrow pathfinder for future space based applications
 - optical clocks
 - cold atoms (interferometry)
 - interaction—free detection

Frequency Comb

Phaselink of beam splitting lasers QUANTUS + PRIMUS : 2 species atom interferometer

Frequency Comb

The frequency comb in the lab

Frequency Comb

- Fiberlaser frequency comb (MenloSystems)
- Remote operation via WLAN
- Battery powered (24V / 8 A)
- Compact and robust design, to withstand 50 g acceleration
- First drop 4.3.2010

PRIMUS: Concept of interferometry

incoming state

C. Lämmerzahl (ZARM, Bremen)

PRIMUS: Concept of interferometry

incoming beam state splitter

PRIMUS: Concept of interferometry

incoming beam state splitter

ZARM

PRIMUS: Concept of interferometry

incoming beam state splitter

mirror

PRIMUS: Concept of interferometry

C. Lämmerzahl (ZARM, Bremen)

PRIMUS: Concept of interferometry

C. Lämmerzahl (ZARM, Bremen)

Atomic interferometry

- one of the most fundamental concepts in physics
- compares two identical systems with different history
- Interferometry in
 - configuration space
 - momentum space
 - spin space
 - energy space

Phase shift

$$\begin{split} \delta\phi &= \int_{\text{upper}} V(h(t))dt - \int_{\text{lower}} V(h(t))dt \approx \left(V(h_{\text{upper}}) - V(h_{\text{lower}})\right)T \approx \frac{dV}{dh}hT \\ &= \frac{dV}{dh} \; \Delta v_h \; T^2 \end{split}$$

 $h \sim T$, T = propagation time

Atomic interferometry

- one of the most fundamental concepts in physics
- compares two identical systems with different history
- Interferometry in
 - configuration space
 - momentum space
 - spin space
 - energy space

Phase shift

$$\begin{split} \delta\phi &= \int_{\text{upper}} V(h(t))dt - \int_{\text{lower}} V(h(t))dt \approx \left(V(h_{\text{upper}}) - V(h_{\text{lower}})\right)T \approx \frac{dV}{dh}hT \\ &= \frac{dV}{dh} \; \Delta v_h \; T^2 \end{split}$$

 $h \sim T$, $T = {\rm propagation}$ time

Atomic interferometry

Phase shift

$$\delta\phi = \frac{dV}{dh} \; \Delta v_h \; T^2$$

Can manipulate velocity of atoms:

- can make Δv_h large (multiple π -pulses)
- can make T large (more efficient)
 - possible only for atoms (atoms have to be sufficiently coherent)
 - possible only in space

Neutron interferometry and atom interferometry

$$\begin{array}{lll} \delta\phi_{\rm acceleration} &=& -\boldsymbol{k}\cdot\boldsymbol{g}\,T^2 \\ \delta\phi_{\rm rotation} &=& -\boldsymbol{k}\cdot(\boldsymbol{\Omega}\times\boldsymbol{v})\;T^2 \end{array}$$

For neutrons $T\sim 10^{-5}~{\rm s}$ For atoms T may be many seconds

Possible experiments with cold atoms

This opens up a new physical regime with new improved tests in microgravity: Application of cold atoms for fudamental physics research

Test of quantum principles

- Testing linearity of quantum mechanics
- · Search for fundamental decoherence, quantum to classical transition
- Measuring wave packet spreading
- Quantum reflection and diffraction
- Study of the measurement process

Test of gravity principles

- Quantum test of UFF
- Quantum test of UFF with atoms with spin
- Newton potential at small distances
- Testing relativistic effects
- Giant hydrogen atom
- Gravity trampoline

• Combined tests (towards quantum gravity)

- Investigation of self gravity
- Test of semiclassical Einstein equations
- Search for modified dispersion relation

Possible experiments with cold atoms

Application of cold atoms for fudamental physics research

Further issues

- measuring atom-atom interactions
- Influence of fluctuations
- Neutrality of atoms
- Modified dispersion relation
 - Atom recoil effects
 - BECs
- Test of Newton's axioms
 - Test of Newton's first axiom (there are force-free motions, inertial system)
 - Test of Newton's second axiom (force = mass \times acceleration)
 - Test of Newton's third axiom (actio = reactio, active vs. passive mass or charge)
- BEC as boson star
- Analogue gravity: simulation of black holes

Cold atoms in microgravity: Technology

Technological applications of cold atoms

- accelerometers
- gyroscopes
- gradiometers
- high precision atomic clocks

used for

- measuring the gravitational field of the Earth (geodesy, climate research, ocean warming, ice melting, ...)
- establishing improved TAI from space

Outline

1 Introduction

2 Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies

3 Selection of projects and proposals

- Testing the UFF
- Clocks: Testing the UGR
- Cold atoms in space
- Condensed matter phenomena
- 4 More science with benefit from microgravity
- 5 Further applications
- 6 Summary and Outlook

Condensed matter - emergent phenomena

- superfluidity
- measurement of critical points
- universality aspects of phase transitions
- scaling effects
- boundary effects
- renormalization group theory

Outline

1 Introduction

2 Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies
- 3 Selection of projects and proposals
 - Testing the UFF
 - Clocks: Testing the UGR
 - Cold atoms in space
 - Condensed matter phenomena

More science with benefit from microgravity

- 5 Further applications
- 6 Summary and Outlook

Atomic interferometry: Test of Equivalence Principle

Phase shift

 $\delta \phi = kgT^2$

Atomic interferometry: Test of Equivalence Principle

Phase shift with different inertial and gravitational masses

$$\delta\phi = \frac{m_{\rm g}}{m_{\rm i}} kgT^2$$

Atomic interferometry: Test of Equivalence Principle

Phase shift with different inertial and gravitational masses

$$\delta \phi = rac{m_{
m g}}{m_{
m i}} kgT^2$$

For two different atomic species \Rightarrow access to Eötvös parameter

$$\eta \sim \left(\frac{m_{\rm g}}{m_{\rm i}}\right)_2 - \left(\frac{m_{\rm g}}{m_{\rm i}}\right)_1$$

presently $\eta \leq 10^{-10}$ (Chu & Peters 1999)

Superposition principle

Model non–linear Schödinger equation (Bialnicky–Birula PRL 1977, Shimony, PRA 1978)

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\Delta\psi + a\left[\ln\left(b\psi^*\psi\right)\right]\psi$$

Test with neutron interferometry $a \le 3.4 \cdot 10^{-13} \text{ eV}$ (Shull et al, PRL 1980) atomic interferometry should lead to orders of magnitude improvement

C. Lämmerzahl (ZARM, Bremen)

Superposition principle

Model non–linear Schödinger equation (Bialnicky–Birula PRL 1977, Shimony, PRA 1978)

Test with neutron interferometry $a \le 3.4 \cdot 10^{-13} \text{ eV}$ (Shull et al, PRL 1980) atomic interferometry should lead to orders of magnitude improvement

C. Lämmerzahl (ZARM, Bremen)

Superposition principle

Model non–linear Schödinger equation (Bialnicky–Birula PRL 1977, Shimony, PRA 1978)

Test with neutron interferometry $a \le 3.4 \cdot 10^{-13} \text{ eV}$ (Shull et al, PRL 1980) atomic interferometry should lead to orders of magnitude improvement

C. Lämmerzahl (ZARM, Bremen)
Superposition principle

Alternative measurement: Scattering at edges

- yields best estimates for neutrons: $a \le 3 \cdot 10^{-15} \text{ eV}$
- \bullet depends on velocity of particles \rightarrow should be better by many orders of magnitude for cold atoms
- quantum reflection
- quantum diffraction

More science with benefit from microgravity

Atomic interferometry: Test of Newton's second axion

Question

Why equations of motion are of second order?

Model

most simple model: motion in constant electric field

$$\vec{\epsilon} \ \vec{x} + m\ddot{x} = qE_0$$

leads to ordinary motion + high frequency *zitterbewegung*

lon interferometric measurement of acceleration

phase shift

$$\Delta \phi = A(\omega) \boldsymbol{k} \cdot \ddot{\boldsymbol{x}}(\omega) \ T^2$$

with transfer function $A(\omega)$

If nothing will be seen \rightarrow estimate $\epsilon \le 10^{-50} \text{ kg s}^2$ (C.L. & Rademaker 2009)

C. Lämmerzahl (ZARM, Bremen)

mannin

Atomic interferometry: Search for fundamental noise

The model

Fluctuations of space-time metric

$$i\hbar\frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\left(\delta^{ij} + h^{ij}\right)\partial_i\partial_j\psi + V\psi\,, \qquad h^{ij}, V \text{ fluctuating}$$

Consequences

- Leads to master equation of Lindblad form for density operator
- Leads to decoherence of quantum system (washing out of interference fringes)
- decoherence time

$$\tau_{\rm D} = \frac{2\hbar^2}{(\Delta E)^2 \tau_{\rm c}} = 2 \left(\frac{\hbar}{\Delta E \tau_{\rm c}}\right)^2 \tau_{\rm c}$$

• for $au_{
m c} = t_{
m Planck}$

$$\tau_{\rm D} = \frac{10^{13} \text{ s}}{(\Delta E/\text{eV})^2}$$

too large. Will be better for BECs.

C. Lämmerzahl (ZARM, Bremen)

(Breuer, Göklü, C.L. 2009)

Cold atoms

Further consequence of space-time fluctuations

Spreading of wave functions

For Gaussian correlation and Gaussian initial wave packet

(Göklü, C.L. Camacho & Macias 2009)

Cold atoms

Further consequence of space-time fluctuations

Spreading of wave functions

For Gaussian correlation and Gaussian initial wave packet

Time–of–flight measurement: t^3 — advantage of long flight times Advantage for cold (slow) atoms

(Göklü, C.L. Camacho & Macias 2009)

Cold atoms

Further consequence of space-time fluctuations

Spreading of wave functions

For Gaussian correlation and Gaussian initial wave packet

Time-of-flight measurement: t^3 — advantage of long flight times Advantage for cold (slow) atoms

(Göklü, C.L. Camacho & Macias 2009)

Cold atoms & atomic interferometry: Further science

- Measuring Lense–Thirring on small time scales (HYPER mission)
- space-time fluctuations
 - Decoherence of higher order
 - Influence of space-time fluctuation on atoms with spin (enhancement of effect)
- Non–abelian optics
- Structure of gravity
 - Testing non–local gravity (vgl. Hehl & Mashhoon 2009)

$$F = -\frac{GM}{r^2} - \frac{GM}{\lambda r} = -\frac{GM}{r^2} \left(1 + \frac{r}{\lambda}\right)$$

• Gravitational SME-effects (Kostelecky et al 2008)

$$U(\boldsymbol{x}) = \frac{GM}{r} \left(1 + \frac{x^i a_{ij} x^j}{r^2} \right)$$

• Finsler-geometry (C.L., Lorek & Dittus, GRG 2009, C.L. & Perlick 2009)

$$\frac{r^3}{T^2} = (1 + A(r))\frac{GM}{4\pi^2} \qquad \qquad \ddot{r} = (1 + B(r))\frac{GM}{r^2}$$

Cold atoms & atomic interferometry: Further science

 Anomalous dispersion relations for atoms (Amelino–Camelia & C.L. 2004, 2009)

$$E^2 - p^2 = m^2 c^4 + \eta_1 \frac{E^3}{E_{\rm QG}} + \dots$$

- Linearity between force and acceleration ↔ Newtons axioms for small acceleration (related to dark matter, Milgrom 1983, Ignatiev 2006)
- Gravitational waves
- Test of Local Lorentz Invariance
- Test of Newtonian potential on large scales (SAGAS mission)
- Test of Newtonian potential on small scales

Outline

1 Introduction

2 Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies
- 3 Selection of projects and proposals
 - Testing the UFF
 - Clocks: Testing the UGR
 - Cold atoms in space
 - Condensed matter phenomena
 - More science with benefit from microgravity

5 Further applications

5 Summary and Outlook

Applications

Practical applications

- Geodesy with short time resolution, Grace follow-on porposal
- Gradiometer
- Clock synchronization TAI

Outline

1 Introduction

2 Fundamental physics under microgravity conditions

- Main physical quests
- Space conditions
- Technologies
- 3 Selection of projects and proposals
 - Testing the UFF
 - Clocks: Testing the UGR
 - Cold atoms in space
 - Condensed matter phenomena
- 4 More science with benefit from microgravity
- 5 Further applications

Summary and Outlook

Steps to ISS

Example QUANTUS

- first realization in drop tower
 - proof of principle
 - miniaturization of apparatus
 - robustness of apparatus
- Irealization in drop tower with catapult
 - further miniaturization of apparatus
- In the second second
 - construction of autonomous system
 - relyability
- ISS / satellite
 - relyability
 - safety

Thanks and Literature

Thank you!

Thanks to

- German Aerospace Center DLR
- German research Foundation DFG
- Center of Excellence QUEST
- C. Lämmerzahl and H. Dittus: Fundamental physics in space a guide to present and future projects, Ann. Physik (2005).
- H. Dittus and C. Lämmerzahl: Fundamental Physics on the ISS, Special Issue of General Relativity and Gravitation (2005).
- H. Dittus, C. Lämmerzahl, and N. Lockerbie: Final report of the Topical Team on Fundamental Physics on the ISS (2006).
- H. Dittus, C. Lämmerzahl: Fundamental Physics, Space, Missions and Technologies, in Lasers, Clocks, and Drag-Free: Exploration of Relativistic Gravity in Space, (Springer, Berlin 2008).