GLONASS Status, Performance and Modernization Efforts

Tatiana Mirgorodskaya

United Nations/United Arab Emirates/United States of America Workshop on the Applications of Global Navigation Satellite Systems

Dubai, United Arab Emirates 16 - 20 January 2011

- GLONASS Policy, Architecture and Status
- GLONASS Modernization Plan
- SDCM
- International cooperation
- Summary

- GLONASS Policy, Architecture and Status
- GLONASS Modernization Plan
- SDCM
- International cooperation
- Summary

State Policy Basic Principles

- GLONASS is a part of the critical state PNT infrastructure providing national security and economy development
- Creating, developing and sustaining the PNT infrastructure is a State responsibility
- No direct user fees for civil GLONASS services.
- Open, free access to GLONASS information necessary to develop and build user equipment
- GLONASS use in combination with other GNSS to increase reliability of navigation
- Mandatory GLONASS use for Governmental and critical applications
- International cooperation on GNSS compatibility and interoperability and worldwide use

Federal GLONASS Program is a basis for GLONASS sustainment, development and use

GLONASS Architecture

circular, $H = 19 \ 100 \ km, i = 64.8^{\circ}$

revolution: 11h 15 min

Two types of signal:

- Standard (open)
- Special (authorized)

Recent Event

Block 42 launch at 02.09.2010

3 SV "Glonass-M" satellites

Block 43 launch failure at 05.12.2010

3 SV "Glonass-M" satellites lost

Next Launches:

- Flight Test of "Glonass-K"
- 5 SV "Glonass-M" in production to be launched in 2011

Launch program of 2011 will ensure full constellation deployment and sustainment

Constellation Status 11.01.2011

The constellation provides:

- Continuous navigation over Russia
- Practically global continuous navigation

GLONASS Availability

(11.01.2011)

Mean availability for a day

Instant availability (PDOP)

Global availability is 97% (PDOP<6, γ >5°)

GLONASS Accuracy

- GLONASS accuracy has 5 time improved for last three years
- Now it is the same order of GPS
- Next improvement phase is expected by the end of 2011

Instant GLONASS SISRE (1 sigma)

GLONASS position accuracy map 20.02.2006 ~25 m (1 sigma) 20.02.2007 ~18 m (1 sigma) 20.02.2008 ~15 m (1 sigma) 20.02.2009 ~5-10 m (1 sigma) ~5-7 m (1 sigma)

- GLONASS Policy, Architecture and Status
- GLONASS Modernization Plan
- SDCM
- International cooperation
- Summary

GLONASS Modernization Plan

- > Full constellation deployment in 2011
- Ground Control Segment modernization
- New GLONASS-K satellite (with improved performance) IOV start in 2011
- GLONASS will continue transmitting existing FDMA signals
- Additional new CDMA signals since GLONASS-K deployment
- GLONASS performance competitive ability provision plan
- GLONASS Federal Program extension until 2020

GLONASS Modernization Plan

1982

2009

2011

2013

"Glonass"

- 3 year design life
- Clock stability -5*10-13
- Signals: L1SF, L2SF, L1OF, (FDMA)
- Totally launched 81 satellites
- Real operational life time 4.5 years

"Glonass-M"

- 7 year design life
- Clock stability 1*10-13
- Signals: Glonass + L2OF (FDMA)
 - Totally launched 28 satellites and going to launch about 11 satellite by the end 2012

"Glonass-K1"

"Glonass-K2"

- 10 year design life
- Unpressurized
- Clock stability 10...5*10-14
 - Signals: Glonass-M + L3OC (CDMA) – test
 - SAR

- 10 year design life
- Unpressurized
- Clock stability 5...1*10-14
- Signals:
 Glonass-M + L1OC,
 L3OC, L1SC, L2SC
 (CDMA)
- SAR

The direction of GLONASS navigation signals modernization

- > Better accuracy
- Better interference and multipath protection
- ➤ Greater interoperability with other GNSS, less cost and complexity for combined use

Introduction of new CDMA signals since GLONASS-K deployment

GLONASS signals modernization of TENIMASE

L1	L2	L3	L1, L2	Future	Status
L10F, L1SF	L2OF, L2SF	-	-		Done
L10F, L1SF	L2OF, L2SF	-	_		Done
L10F, L1SF	L2OF, L2SF	L3OC test	-		From first test sat (2011)
L1OF, L1SF	L2OF, L2SF	L3OC	L10C, L1SC, L2SC		From №3 sat Glonass-K
L10F, L1SF	L2OF, L2SF	L3OC	L1OC, L1SC, L2SC	L3SC, L1OCM, L2OC, L5OC	Under development after 2015

FDMA signals

CDMA signals

Major principles of the GLONASS-2020 Concept

Sustainment, Development, Use

Sustainment

- State commitments on performance (constellation, availability, accuracy, reliability)
 - Launch program until 2020 with spares on-orbit and on the ground

Development

- Constellation improvement
- New signals implementation
- Accuracy and availability improvement
- Interference protection improvement
- New capabilities implementation
- Service area extension

Use

- Governmental use support
- Private activity encouraging
- Make GLONASS as worldwide utility

Extended PNT Architecture of Russia

Regional

Augmntns

Earth Attitude and Rotation System

Time Reference System UTC (SU)

Geodesy Reference and Maps

Special User Equipment Civil Users Equipment

Synergy of performance and requirements

- GLONASS Policy, Architecture and Status
- GLONASS Modernization Plan
- SDCM
- International cooperation
- Summary

SDCM (SBAS Augmentation)

Objectives

- GNSS monitoring
 - Integrity
 - Deep analysis in postprocessing
- Differential corrections
- Service area Russian territory

Current status of monitoring stations

- Operational network
 - 14 stations in Russia
 - □ 2 station in Antarctic
- > Future development
 - 8 stations more in Russia
 - ☐ 5 stations more outside

according to JSC "Russian space systems"

SSI-01 monitoring station installation and commissioning (Bellingshausen, Antarctica, 2010)

Main view of the SSI-01

Off-site equipment

GLONASS/GPS antenna + Vaisala weather station

Satellite communication channel antenna

Envisaged locations for GEOs "Luch" with SDCM payload (2011-2013 timeframe)

- GLONASS Policy, Architecture and Status
- GLONASS Modernization Plan
- SDCM
- International cooperation
- Summary

International Cooperation

Goals:

- Promote GLONASS worldwide use
- Provide GNSS compatibility and interoperability
- Integrate GLONASS into the Global GNSS Infrastructure

- The United States GPS/GLONASS compatibility and interoperability
- European Union Galileo/GLONASS and augmentations compatibility and interoperability
- India GLONASS deployment support, augmentations interoperability, user receiver joint development and production
- UN GNSS Providers Forum
- GLONASS Use Cooperation
 - Former USSR countries
 - India
 - Middle East, Australia, Latin America...
 - UNICG

- GLONASS Policy, Architecture and Status
- GLONASS Modernization Plan
- SDCM
- International cooperation
- Summary

Summary

- GLONASS Program is the high priority of the Russian Government policy
- GLONASS open service is free for all users
- GLONASS Program is in a progress, objective to be achieved by 2011
- GLONASS improvement is a major objective:
 - Performance to be comparable with GPS by the end of 2011
 - Full constellation (24 sats) by the mid of 2011
- GLONASS will continue
 - Keep the GLONASS traditional frequency bands
 - Transmit existing FDMA signals
 - Introduce new CDMA signals
- New GLONASS Program (2012 2020) is under development to be adopted by the end of 2011
 - State commitments for major performance
 - GLONASS sustainment, development, use
- International cooperation make GLONASS as one of key elements of the international GNSS for worldwide use

Thank you for your attention!