The Impact, Mitigation and Adaptation to Climate Change in Sri Lanka

M M P. Mendis
Department of Meteorology
Sri Lanka

Four Rain Seasons

North-East Monsoon Season (Dec-Feb) First Inter monsson Season (Mar- Apr) Average Rainfall in mm Average Rainfall in mm

SEASONS	Southwest Monsoon	Northeast Monsoon	First Intermonsoon	Second Intermonsoon
PERIOD	May-Sep	Dec-Feb	Mar-Apr	Oct-Nov
RAINFALL (Average)	556 mm	479 mm	268 mm	558 mm

Variability of Seasonal Rainfall in Sri Lanka

Contribution of seasonal rainfall to annual total
Northeast Monsoon - 25\%
Southwest Monsoon - 30\%
First Intermonsoon - 15\%
Second Intermonsoon- 30\%

	$\mathbf{1 9 0 1 - 1 9 3 0}$	$\mathbf{1 9 3 1 - 1 9 6 0}$	$\mathbf{1 9 6 1 - 1 9 9 0}$	$\mathbf{1 9 9 1 - 2 0 1 0}$	$\mathbf{1 8 8 1 - 2 0 1 0}$
Northeast Monsoon	$529(27 \%)$	$582(32 \%)$	$459(44 \%)$	$459(44 \%)$	$517(37 \%)$
Southwest Monsoon	$548(22 \%)$	$541(22 \%)$	$534(17 \%)$	$470(22 \%)$	$534(22 \%)$
First Intermonsoon	$268(33 \%)$	$301(23 \%)$	$263(29 \%)$	$243(36 \%)$	$271(29 \%)$
Second Intermonsoon	$595(23 \%)$	$571(23 \%)$	$554(24 \%)$	$559(26 \%)$	$577(23 \%)$
Annual	$1936(10 \%)$	$1993(12 \%)$	$1813(15 \%)$	$1714(13 \%)$	$1896(13 \%)$

Coeff. Variation (CV) within parenthesis

Observed Annual Rainfall - Sri Lanka

In general, a decreasing trend during the last 30 - $\mathbf{4 0}$ years

Future Scenarios

Rainfall Change Scenario under \mathbf{A}_{2} Storyline

HadCM3 (Hadley Centre Couple Model Version 3)

Observed Air Temperature in Sri Lanka (1931-2009):

Since 1960, the average temperature rise is of the order of $0.16^{\circ} \mathrm{C}$ per decade

During the same period global temp rise $0.13{ }^{\circ} \mathrm{C}$ per decade

Future Scenarios

Mean Temperature change scenario under \mathbf{A}_{2} Storyline (Annual)

HadCM3 (Hadley Centre Couple Model Version 3)

Future Scenarios

Projected increase in mean annual temperature by 2100 in Sri Lanka (base period 1961-1990 and A2 S/L)

Source	Model	Change in ${ }^{\circ} \mathrm{C}$
Kumar et al., 2006	PRECIS	+2.5 to +4.0
Islam \& Rehman,2004	PRECIS	+2.5 to +4.0
Basnayake et al., 2004	Downscaling	+1.7 to +2.5
De Silva, 2006	Downscaling	+1.6 (by 2050)

> General Consensus SL will become increasingly warmer! BUT magnitude of warming?

Impacts of climate change in Sri Lanka

1 Increases in the frequency and intensity of droughts, floods and landslides

2 Variability and unpredictability of rainfall patterns
3. Increase in temperature
4. Sea level rise

Climate Extremes

Frequency of climate extremes, especially those related to rainfall has increased

Some of the highest rainfalls have been experienced during the last two decades

725 mmat Deniyaya 2003
522 mm at Kudava 2003 493 mm at Colombo 1992
440 mm at Colombo 2009
338 mm at Ratnapura 2003 337 mm at Kandy 2012 316 mm at Kurunegala 2012

Leading not only to Aloods But also to severe Landslides (a significant increase in landslides)

Highest 24H Rainfall in Colombo on yearly basis from 1869

More and more extreme rain events are experienced.

Landslide

Main triggering mechanism for Landslides is exceptionally heavy rainfall
A significant increase in Landslide occurrences
10 districts out of 25 are vulnerable to landslide.
Almost 30\% land area in Sri Lanka

Housing and Urban Development Sector Vulnerability to

Vulnerability to Landslides

Source : Climate Change Secretariat - Ministry of Environment, Sri Lanka

Plantation Sector Vulnerability to Landslide Exposure

Vulnerability to Sea Level Rise

Sri Lanka is presently experiencing an erosion rate
of $0.30-0.35 \mathrm{~m}$ per year in $45 \%-55 \%$ of the coastline

Coastal area in Sri Lanka consists of

- 24\% of the land area
- 32% of the population
- 65\% of the urbanized land area
- A significant extent of agricultural land

Sea Level Rise together with increased wave heights due to Climate Change can further increase coastal erosion.

Source : Climate Change Secretariat - Ministry of Environment, Sri Lanka

Increased Occurrence of Droughts

On average, Sri Lanka faces drought conditions every $3-4$ years. However, in the recent few decades - more and more drought are experience

Housing and Urban Development Sector Vulnerability to

Vulnerability to Droughts

Use of Space Base Information to address Challengers of Climate Change

1 Identification of high intensity rainfall events
2. To study the variability of seasonal rainfall patterns

1 Identification of high intensity rainfall events

Rainfall Intensity (mm/hr) - Ratnapura 24 to 26 May 2012

TRMM (TMPA-RT) Rain Rate ($\mathrm{mm} / \mathrm{hr}$)

Raifall Intensity (mm/hr) - Tawalama
24 to 26 May 2012

2. To study the variability of seasonal rainfall patterns

Time Series, Area Statistics
(Region: $79 \mathrm{E}-81 \mathrm{E}, 5 \mathrm{~N}-9 \mathrm{~N}$)
Anomaly of Rain Rate

TRMM Level-3 Monthly Rain Rate Anomaly

TRMM 3B43 Climatology Rain Rate (mm/hr)
Jun - Sept (1998-2012)

2010 (Jun - Sept) (mm/hr)

TRMM 3B43 Anomaly of Rain Rate
2008 (Jun- Sept) (mmhr)×10~2

2011 (Jun- Sept) (mm/hr)x10~2

2009 (Jun - Sept) (mm/hr)×10~2

2012 (Jun - Sept) (mm/hr)x10~2

Monthly Outgoing Long wave Radiation (OLR) SWM season (Jun - Sept) Integrated Satellite data from NOAA/CPC

Mean olr W / m -

Time Series, Area Statistics
(Region: 79E-81E, 5N-9N)
Anomaly of Rain Rate

TRMM 3B43 Climatology Rain Rate (mm/hr)
Dec - Feb (1998-2012)

Dec2010 - Feb2011 (mm/hr)

TRMM 3B43 Anomaly of Rain Rate
Dec2008 - Feb2009 (mm/hr)

Dec2011 - Feb2012 (mTMr)

Dec2009 - Feb2010 (mm/hr)

Dec2012 - Feb2013 (mm/hr)

Inter Tropical Convergence Zone (ITCZ)

Closing Remarks

* As a small Island, Sri Lanka can be obtain unique benefit of the used of space base information combined with ground data to address changes in the weather and climate. The capacity of receiving of earth observation data should be developed.
Reliable more ocean observations (Remote sensing/ in situ) should be increased.
Remote sensing data should be available free of charge or amounts of low cost.

Thank You

Tracks of Tropical Cyclones Crossed Sri Lanka (1901-2000)

Sri Lanka bringing much rain and strong wind but chance of land fall along east coast very low (only 16 out of some 1300 storms since 1891)

Cyclone 'NISHA' 2008.11.28

Tropical Cyclone "NLAMP"

Track of Tropical Cyclone "NILAM"
2010/10/26-2012/11/01

