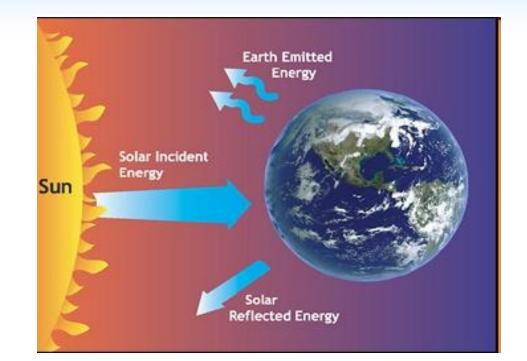
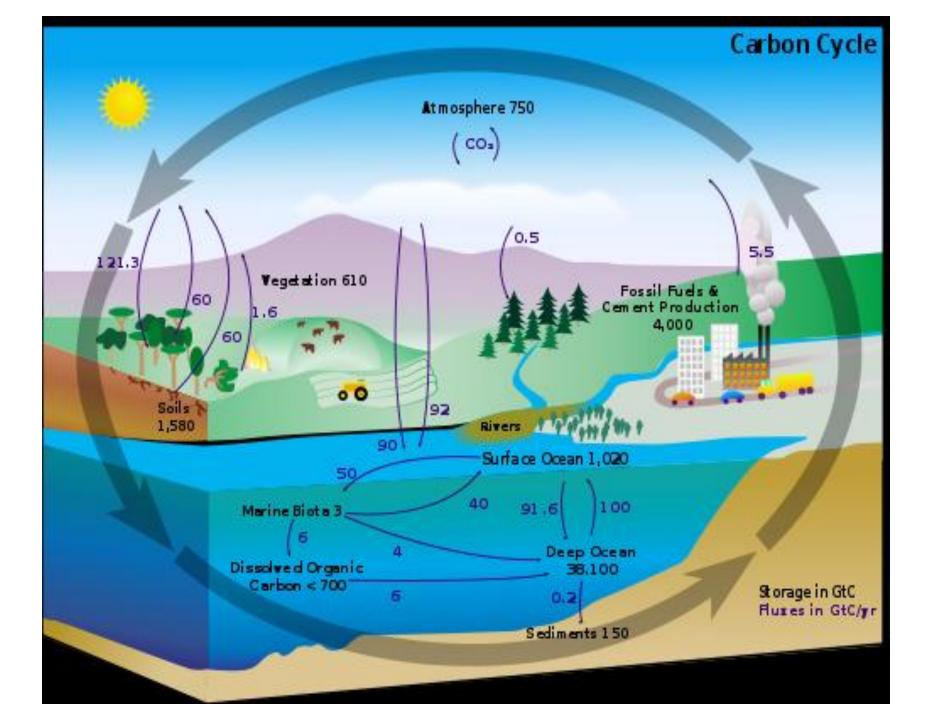
BLUE CARBON & CLIMATE CHANGE IN INDONESIA

SEAGRASS FUNCTION AND ITS RESOURCE VALUATION

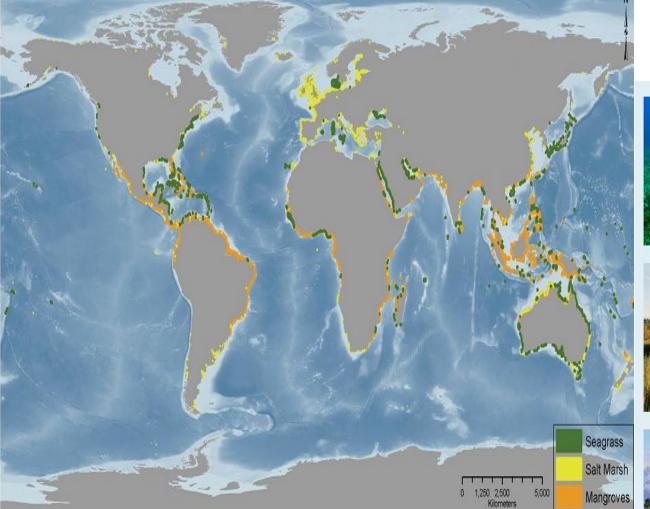
ARIEF BUDI PURWANTO


arief.purwanto@pksplipb.or.id

CENTER FOR COASTAL & MARINE RESOURCES STUDIES BOGOR AGRICULTURAL UNIVERSITY Jakarta, 2013


Oceans are warming: various ways of putting it

- Earth is burning!
- Human hand is involved in this fire.
- Smoke (CO₂) is all around us.

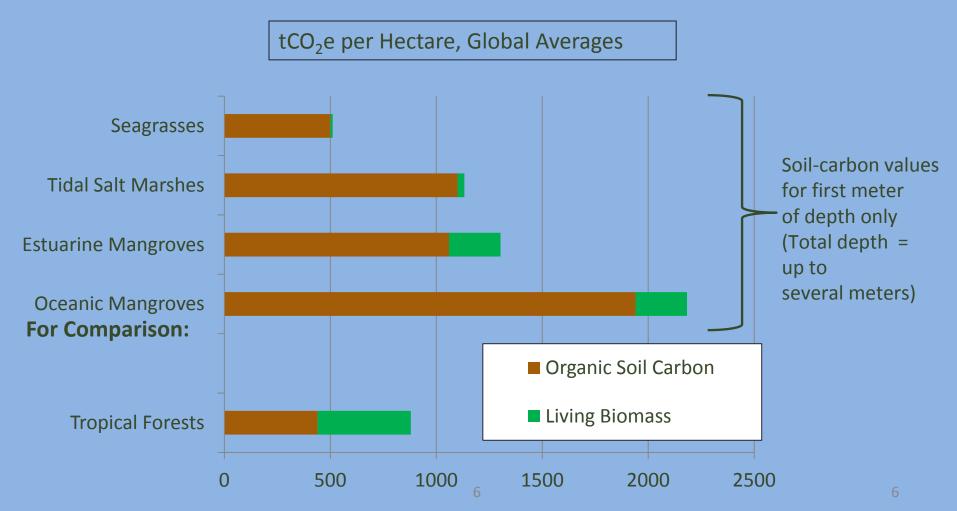

C-footprint is strong.

What and Where is Blue Carbon?

Figure 1. Global distribution of seagrass, salt marsh, and mangroves.

Seagrass meadows are communities of underwater flowering plants found in coastal waters of all continents except the Antarctic. There are more than 60 known seagrass species and up to 10 to 13 of them may co-occur in tropical sites.

Tidal salt marshes are intertidal ecosystems occurring on sheltered coastlines ranging from the sub-arctic to the tropics, though most extensively in temperate zones. They are dominated by vascular flowering plants, such as perennial grasses, but are also vegetated by primary producers such as macroalgae, diatoms, and cyanobacteria.


Mangroves are salt-tolerant flowering plants, predominantly arboreal, that grow in the intertidal zone of tropical and subtropical shores. They are estimated to occupy almost 40% of tropical coasts worldwide, down substantially from 75% in the recent past.

Source : Nicholas Institute for Env. Policy Solution

The Blue Carbon Story

- Coastal ecosystems are at great risk
 - Significant store of "blue carbon"
 - Many other ecosystem services
- Risks are driven by economic pressures to convert (aquaculture, agriculture, development,...)
- Global climate mitigation efforts could change economic incentives for protection
 - Payments for reducing conversion and restoration
 - Similar to forests (REDD+)
 - Not yet in UNFCCC system
- Initial test of concept
 - Science: how much carbon can be lost/restored over time
 - Economics: at what cost
 - Policy: can current policy frameworks adapt? New ones needed?
 (source: modification from UNEP, 2012)

... Yield High Soil-Carbon Stocks

Loss rates are high

Habitat Type	Global extent (km²)	Annual Loss Rate (~1980–2000)	Total Historical Loss (%)
Seagrass	300,000-600,000ª	1.2%-2% ^b	29°
Tidal Marsh	400,000 ^d	1%-2%°	Centuries of conversion ^f
Mangroves	152,000-170,0009	0.8%-2.1% ^h	351

Source : Nicholas Institute for Env. Policy Solution

What May Be Eligible for Crediting?

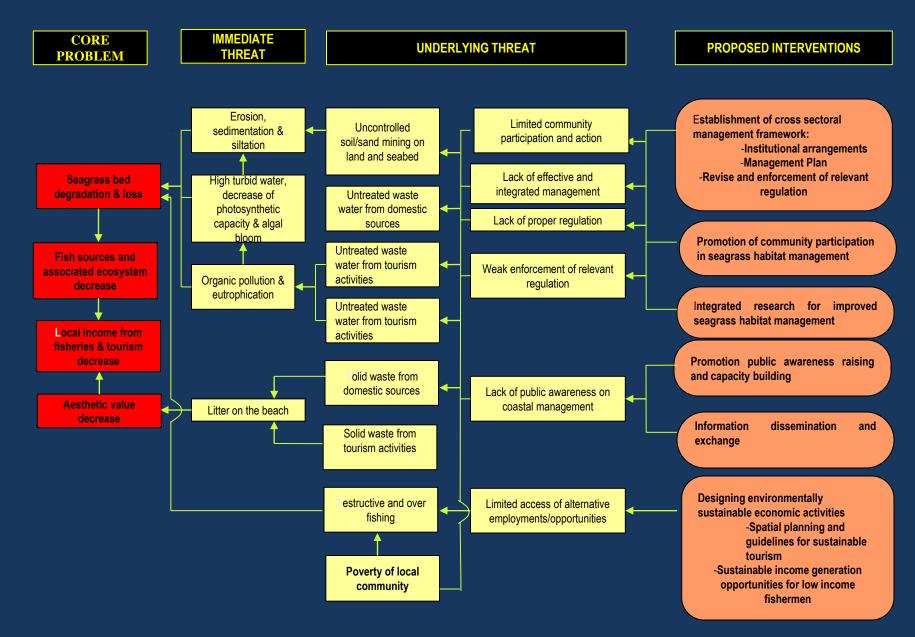
Potential Credit Source	Time Period	Ecosystems
Avoided Loss of Sequestration Flux	Perpetuity	Seagrasses Tidal Salt Marshes Mangroves
Avoided Emissions from Soil Carbon	Several Years to Decades	Seagrasses Tidal Salt Marshes Mangroves
Avoided Emissions from Biomass (REDD)	Immediate	Mangroves

We need to lighten the C-footprint: To save Oceans as a habitable environment & functioning ecosystem.

Projected scenarios: Reviews

1 Acidification

- 2. Warmer ocean (Ocean has absorbed 80% of heat added to Earth's system by climate change).
- **3.** Altered chemistry of seawater
- **4.** Shift in key nutrients
- **5.** Changes in key biogeochemical cycles
- **6** Reduced calcification (corals & shells)


One of Solution: Sequestration of CO₂

Ocean sink
 CO₂ ocean uptake

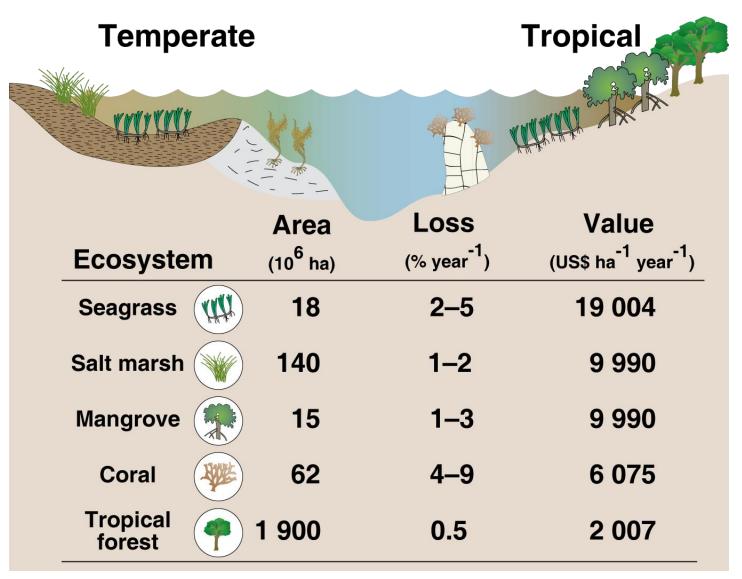
 Ocean fertilization (uptake by marine plants)

Uptake by microalgae for biofuel

Storage below seabed

CAUSAL ANALYSIS OF THREATS

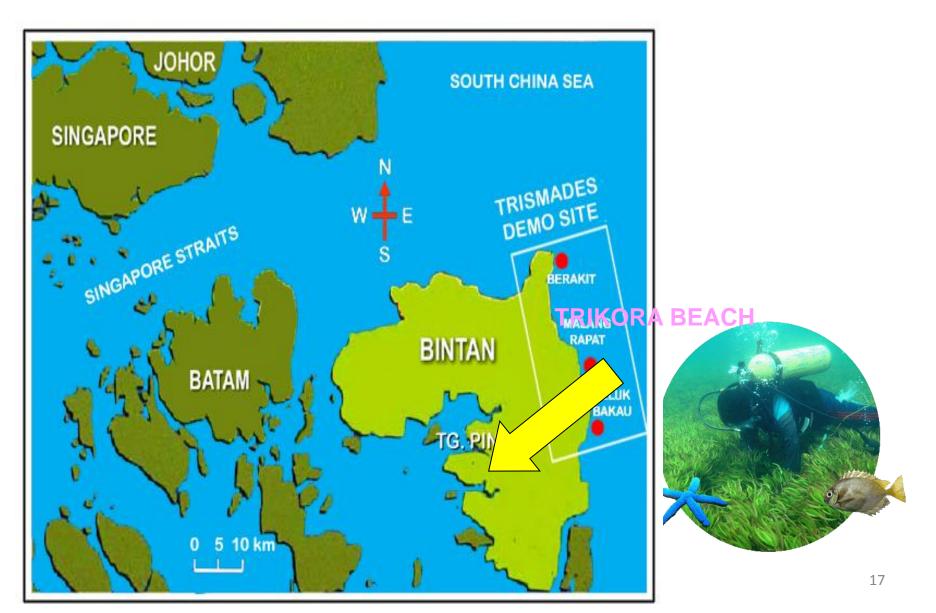
What are seagrasses? Submerged marine flowering plants Belonging to Class Liliopsida within the Division Magnoliophyta


Structurally, seagrasses are similar to terrestrial grasses. All seagrasses are typically rhizomatous, they have prostrate underground stems (or rhizomes), with developed air channels Seagrass plants have two flowering forms 1. Monoecious : male and female flowers borne on the same plant

> 2. Dioecious : male and female flowers occur on separate plants

Seagrasses have a broad global distribution

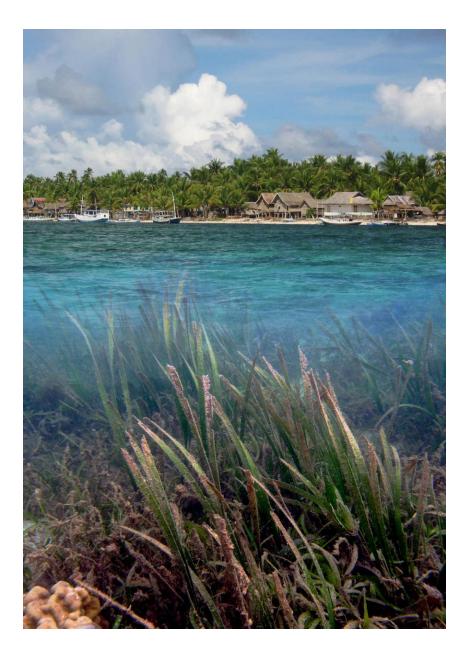
Seagrasses are valuable and threatened compared to other major marine habitats



Source : PEMPSEA, 2012)

But what about the value of the Blue Carbon stored in the system?

Research Location


BENEFITS

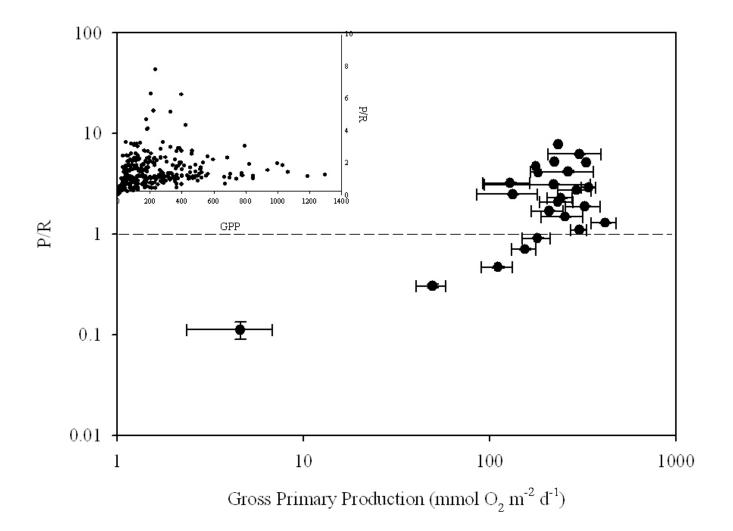
- **ECOSYSTEM BENEFITS**
- BENEFITS FOR FISHES AND OTHER MARINE ANIMALS
- LOCAL BENEFITS

EXPECTED OUTCOMES:

- MANAGEMENT OF THE AREA IMPROVED
- **AWARENESS IS IMPROVED**
- ENVIRONMENTALLY SUSTAINABLE OF LOCAL ECONOMIC ACTIVITIES INCREASED

MAJOR COMPONENTS OF ACTIVITIES:

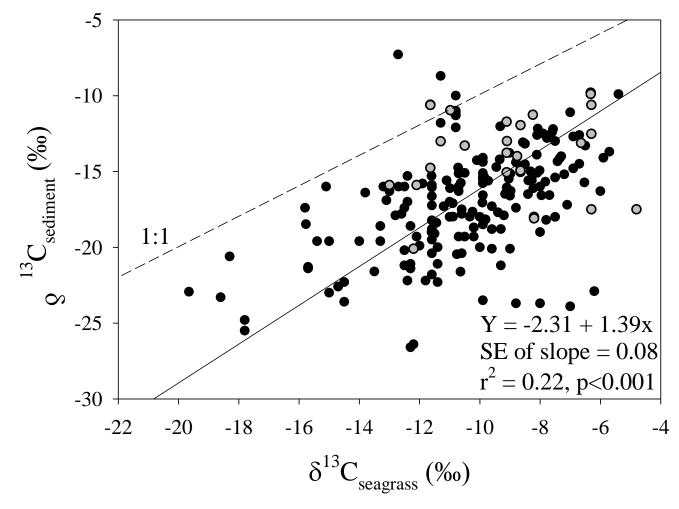
IMPROVING THE MANAGEMENT OF SEAGRASS AND ASSOCIATED HABITATS


AWARENESS RAISING AND CAPACITY BUILDING

PROMOTING ENVIRONMENTALLY SUSTAINABLE ECONOMIC ACTIVITIES

A new realization: seagrasses are important in the global carbon balance -

Dense seagrass beds fix more CO₂ than they consume


Estimates of global CO₂ flux in seagrass beds

		low estimate of		high estimate of		
			Integrated global			
	NCP	•		extent	Integrated NCP	
	tons CO ₂ e ha ⁻¹ y ⁻¹	km²	Tg CO₂e y⁻¹	km²	Tg CO₂e y⁻¹	
Mean	4.4	300000	130.7	600000	261.4	
Upper 95th cl of mean	6.2	300000	185.5	600000	371.1	
Lower 95th cl of mean	2.5	300000	75.9	600000	151.8	
maximum	85.4	300000	739.2	600000	1478.3	

For comparison, mean NCP for: wetlands = 0.6 tons CO₂e ha⁻¹y⁻¹ Amazon rainforest: 3.7 tons CO₂e ha⁻¹y⁻¹

At \$20/ton, the NCP value of seagrasses is about \$88 ha⁻¹y⁻¹, small compared to the \$19k for nutrient processing or \$3k of fisheries yield

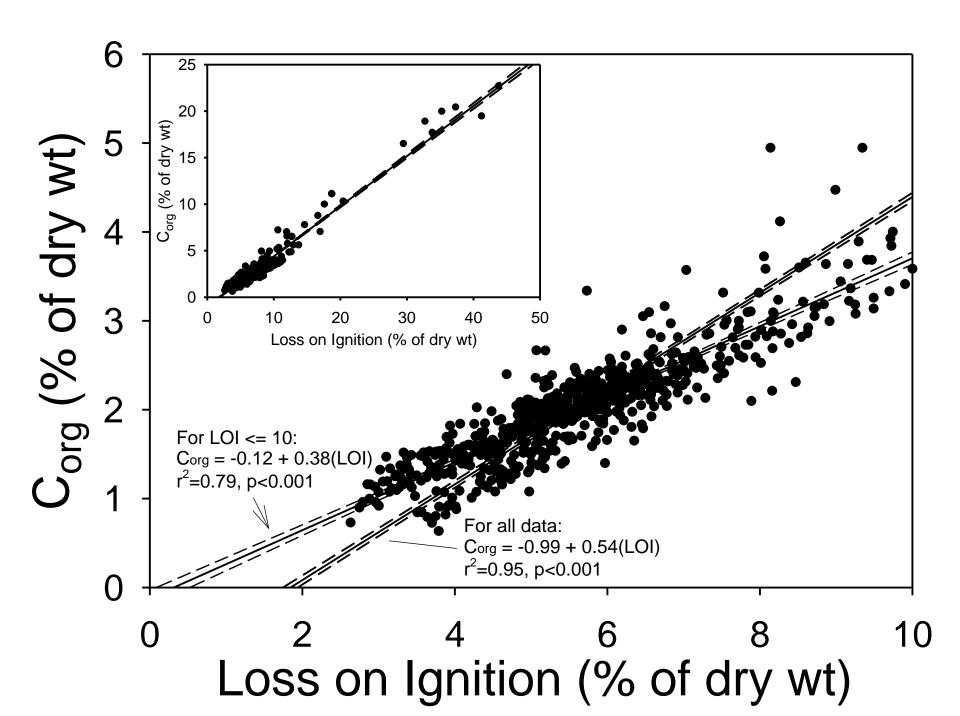
Only about half of the C buried in seagrass beds is derived from seagrass

Source Kennedy et al 2010 GBC

So, how much C is stored in seagrass ecosystems?

- Measuring C storage in some Seagrass ecosystems:
 - Bintan waters
- Literature review of C stores in seagrasses
- Back-of-the-envelope estimates of the sizes of stocks and potential value of those stocks in a global CO₂ market

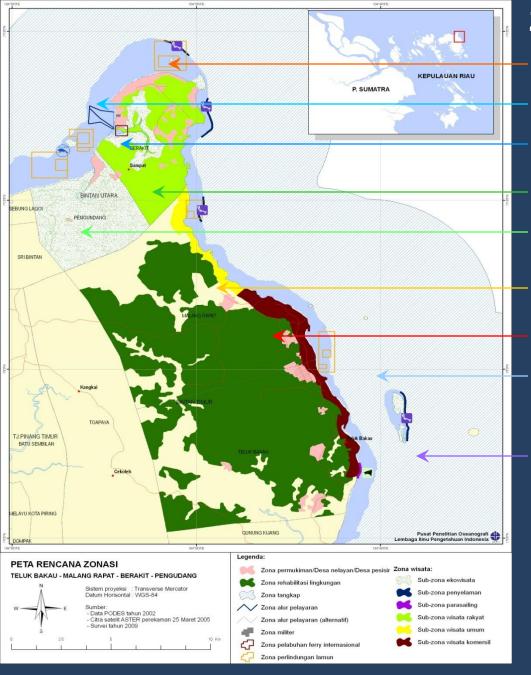
Measuring C stored in living biomass



Need:

- volumetric measures of Dry Bulk Density (mass of soil per volume)
- Carbon content of soil (as a fraction of mass)
 - Organic matter, or
 Loss on Ignition
 (LOI)

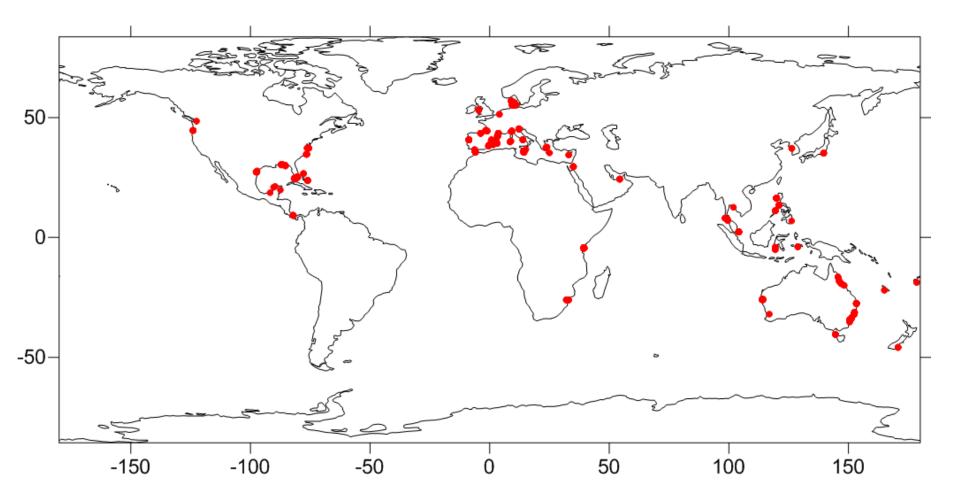
C_{org}



A very rough estimate of carbon stored in the top meter of seagrass soils in Bintan Water

18,000 km² of seagrasses 594 tons CO₂e ha⁻¹

1 x 10⁹ tons CO₂e stored in the soils!


Anthropogenic CO₂e flux is about 29 x 10⁹ tons y⁻¹

Zonation of Bintan Coastal Seagrass Protection Zone) Limited Utilization Zone Ship traffic Line Zone **Tourism Village Sub-Zone Ecotourism Sub-Zone Common Tourism Sub Zone Capture Fisheries Sub Zone**

Diving Activity Sub Zone

Towards an estimate of global Seagrass Blue carbon stocks

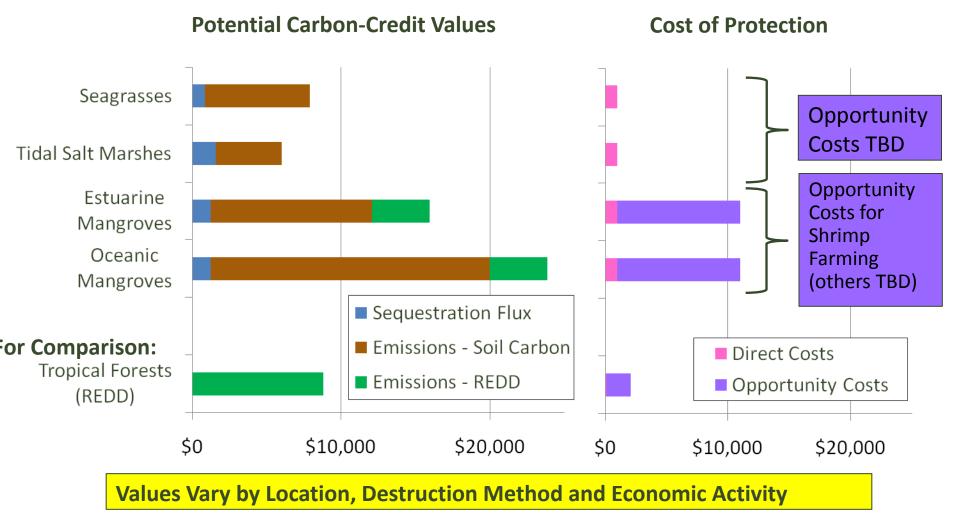
3576 data points from 882 discrete sample locations

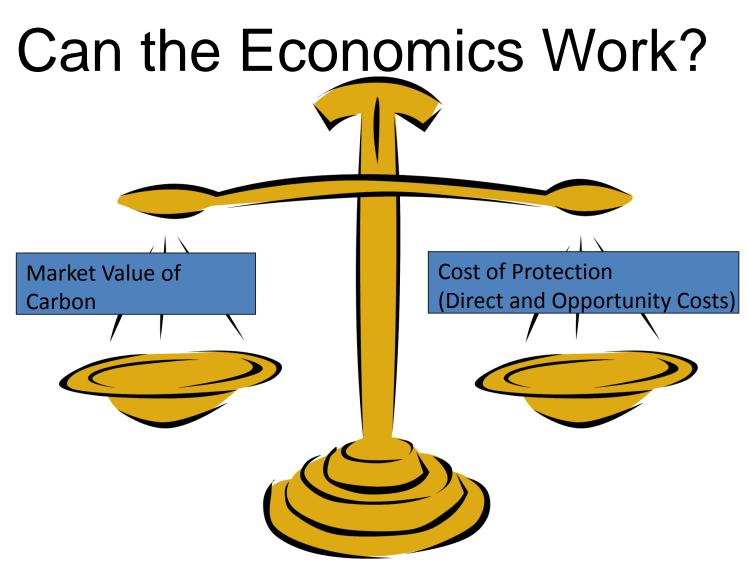
Global averages carbon sequestration rates and global ranges for the main carbon pools, by habitat type

Habitat Type	Annual Carbon Sequestration Rate (tCO ₂ e/ha/yr)	Living biomass (tCO ₂ e/ha)	Soil organic carbon (tCO ₂ e/ha)
Seagrass	4.4 ± 0.95 ^a	0.4–100 ^b	66–3040 ^c
Tidal Marsh	7.97 ± 8.52 ^d	12–60 ^e	330–1,980 ^f
Estuarine Mangroves	6.32 ± 4.8 ^g	237–563 ^h	1,060 ^h
Oceanic Mangroves	6.32 ± 4.8 ^g	237–563 ^h	1,690–2,020 ^h

Table 1. Estimates of total carbon (C) at risk of release, including biomass carbon and soil organic carbon in the top meter of soil beneath coastal habitats.

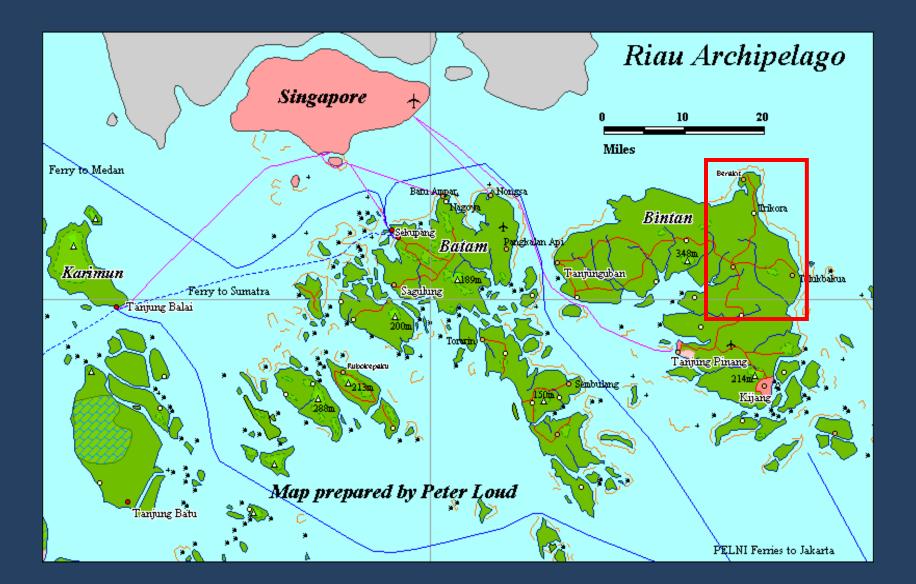
Habitats	Soil Organic Carbon at risk (top meter, tCO ₂ e ha ⁻¹)	Total Carbon at risk including biomass (tCO ₂ e ha ⁻¹)	Current Habitat Extent (Mha)	Total Carbon in Habitat (BtCO2e)	C loss from annual habitat conversion - 0.7% rate (BtCO ₂ e yr ⁻¹)	C loss from annual habitat conversion - 2% rate (BtCO ₂ e yr ⁻¹)	Economic costs of habitat loss - 0.7% rate (Billion US\$ yr ⁻¹)	Economic costs of habitat loss - 2% rate (Billion US\$ yr ⁻¹)
Salt Marsh	917	949	5.1	4.8	0.03	0.10	1.4	4.0
Mangroves	1298	1762	13.8	24.3	0.17	0.49	7.0	19.9
Seagrass	500	511	30	15.3	0.11	0.31	4.4	12.6
Total			48.9	44.5	0.31	0.89	12.8	36.5


Note: Carbon loss estimates with conversion assume complete loss of carbon in biomass and the top meter of soil; these estimates are nevertheless conservative since most areas contain deeper soils up to several meters which may also be affected by habitat conversion, though there is less scientific certainty on the fate of deeper soil layers.


Points to remember:

- 1. Seagrasses play a significant part in the global C cycle
- 2. Bintan Waters have huge C stocks
- Globally, seagrasses are as important as forests in storing CO₂ (on an areal basis)
- The value of the C stored in seagrasses is around \$12,000 ha⁻¹, on par with the annual value of other ecosystem services provided by seagrasses
- 5. Seagrasses are declining at a fast rate, potentially releasing 0.1 - 0.3Gton CO₂e y⁻¹ (worth ca. \$4-12 B y⁻¹ at current market values)
- 6. Can seagrasses be included in a REDD+-like scheme? Who would get the payments?
- Big job ahead: predicting the fate of stored C when seagrasses are destroyed

The Economics May Work in Some Cases



ECONOMIC VALUATION OF EAST BINTAN SEAGRASS ECOSYSTEM

STUDY SITE

EAST BINTAN SEAGRASS BEDS

• TOTAL AREA : 2,093.66 HA

- TANJUNG BERAKIT : 847.29 HA
- MALANG RAPAT : 595.32 HA
- TELUK BAKAU : 147.02 HA

SPECIES DIVERSITY :11 SPECIES i.e. H.u., H.p., C. r., C.s., S.i., Th.c., E.a., Th.h., H.o., H.d., H.s. (ISC 2005)

ECONOMIC VALUATION EAST BINTAN SEAGRASS AND ITS ASSOCIATED HABITAT

- Direct use value: Fisheries Production
 - Type of gears:
 - Kelong
 - Net
 - Sampan (dinghy)
 - Crab trap
 - FAD
 - Kelong darat

VALUATION METHODS

- Combination of market value
- Based on in-depth interview and questionnaire

No	Location	Type of Gear	Total Type of gear	Total involvement of:		Total Income	Total Revenue
				Households	Residents *)	Household per year (Rp.)	per year (Rp.)
1	Teluk Bakau	Kelong	28	56	280	18,000,000	1,008,000,000
		Net	10	20	100	11,700,000	234,000,000
		Dinghy	3	3	15	4,800,000	14,400,000
		Crab trap	20	20	100	6,660,000	133,200,000
		Kelong Darat	3	3	15	8,400,000	25,200,000
			64	102	510		1,414,800,000 (US\$157,200)
2	Malang Rapat	Kelong	40	80	400	18,000,000	1,440,000,000
		Net	42	84	420	11,700,000	982,800,000
		Dinghy	7	7	35	4,800,000	33,600,000
		FAD.	4	16	80	37,500,000	600,000,000
			93	187	935		3,056,400,000 (US\$339,600)
3	Tanjung Berakit	Kelong	38	76	380	18,000,000	1,368,000,000
		Net	50	100	500	11,700,000	1,170,000,000
		Dinghy	19	19	95	4,800,000	91,200,000
		Artificial Dev.	20	80	400	37,500,000	3,000,000,000
		Kelong Darat	10	10	50	8,400,000	84,000,000
			137	285	1425		5,713,200,000 (US\$634,800)
Total Economic Value		294	574	2,870		10,184,400,000 (US\$1,131,600)	

Table 1: Total Economic Value of Seagrass from Fisheries Sector

Note:

*) It is measured based on the estimation that one household consists one fisher, one wife and three Children

Source:

Based on data analysis from study sites

CAPTURE FISHERIES

- 2870 fishers (65% of total East Bintan residents)
- Valuation based on actual income gained from actual works of fishers (6-7 month/year):
 - Tg. Berakit : Rp. 5,713,200,000 or US\$ 634,800 per year
 - Malang Rapat: Rp. 3,056,400,000 or US\$339,600 per year
 - Teluk Bakau : Rp. 1,414,800,000 or US\$157,200 per year
- Total value from capture fisheries:
 Rp. 10,184,400,000 or US\$ 1,131,600 per year

ECONOMIC VALUATION

- Indirect Use Value:
 - Tourism activities (Foreign and local tourists)
 Valuation using travel cost method

NUMBER OF TOURISTS AND THEIR SPENDING-TRAVEL COST METHOD

- 13,832 Singaporean and foreign visitors annually and average spend two nights
 - Conservative estimate of expenditure US\$185 or Rp 1,530,000)
 - Total expenditure US\$ 2,352,440 or
 - Rp 21,162,960,000)
- 9,620 local tourists annually, their expenditures US\$10,00 or Rp. 90.000/visit
 - Total expenditure per year US\$ 96,200 or Rp. 865,800,00
- Total economic value of tourism sector: US\$2,447,640 or Rp 22,028,760,000 per year

ECONOMIC VALUATION

- Indirect Use Value:
 - Education value as research object
 - Valuation technique developed by White & Cruze-Trinidad (1998) → calculation of project cost of research output → using data recorded by RCO-LIPI and some research project by local students

PROJECT COST OF RESEARCH OUTPUT (White & Cruz-Trinidad 1998)

 Using data recorded by Research Centre for Oceanography-Indonesian Institute of Sciences and some research project of students

Total cost of seagrass project:
 US\$55,556 or Rp.500,000,000

No	Activity	Value	Total Economic Value		
INU	Activity	v alue	Rp	US\$	
Α	Use Value				
	Direct Use Value				
1	Fisheries	Direct Use Value	10,184,400,000	1,131,600	
2	Food	Direct Use Value	Not accounted		
3	Medicinal	Direct Use Value	Not accounted		
4	Fertilizer Direct Use Value		Not accounted		
5	Handy craft	Direct Use Value	Not accounted		
	Sub Total		10,184,400,000	1,131,600	
	Indirect Use Value				
1	Marine Tourism	Indirect Use Value	22,028,760,000	2,447,640	
2	Research Object	Indirect Use Value	500,000,000	55,556	
	Sub Total		22,528,760,000	2,503,196	
B	Non Use Value				
1	Existence Value	Direct / Indirect Value	Not accounted		
2	Option Value Direct / Indirect Value		Not accounted		
3	Bequest Value	Direct / Indirect Value	Not accounted		
	Total Economic Value	e	32,713,160,000	3,634,796	
	Total Seagrass Area (ha)	I	1,590	
	Total Economic Value	e per ha per year	20,579,103	2,287	

 Table 2: Total Economic Value of Seagrass

HUMAN INDUCED THREATS

- Sand mining → sedimentation → impact on water clarity and cover seagrass → decrease → photosynthesis
- Blast and poison fishing \rightarrow degrade coral and seagrass
- Mangrove cutting → sedimentation → degrade other neighboring ecosystems → decrease fisheries production and disturb coastal amenities

CONCLUDING REMARKS

- Economic gain of East Bintan seagrass bed is estimated: US\$3,634,796 or US\$2,287/ha/year
- Marine tourism contributed highest US\$2,447,640/year
- Capture fisheries absorb highest labor force: 574 households or 2870 peoples and contributed US \$ 1,131,600/year
- Tourisms absorb 150 households or 750 peoples
- Integrated and sustainable management is needed

What Next?

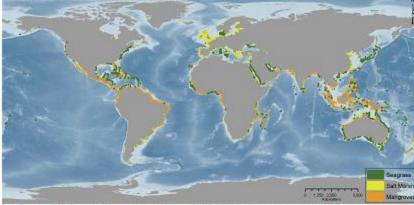
Estimate stocks, emission rates

and protection costs under a

wider range of conditions

Pick up a Copy

policy brief


N PB 10-05 December 2010 nicholasinstitute duke edu

Payments for Blue Carbon Potential for Protecting Threatened Coastal Habitats

Brian C, Murray, W, Aaron Jenkins, Samantha Sifleet, Linwood Pendleton, and Alexis Baldera¹ Ncholasins Stute for Environmental Policy Solutions, DukeUniversity

Coastal habitats worldwideare under increasing threat of destruction through human activities such as farming, aquaculture, timber extraction, or real estate development. This loss of habitat carries with it the loss of critical functions that coastal ecosystems provide: support of marine species, retention of shorelines, water quality, and scenic beauty, to name a few. These losses are large from an ecological standpoint but they are economically significant as well.³ Because the value of these ecosystem services are not easily captured in markets, those who control these lands often do not consider these values whenchoosing whether to clear the habitat to produce goods that can be sold in the marketplace. This is a form of market failurethat leads to excessive habitat destruction. As aresult, scientists, policymakers, and other concerned parties are seeking ways to change economic incentives to correct the problem.

Figure 1. Global distribution of seagress, salt marsh ,and mangroves

Sevense Strans in viers in 10 of the print kains of polycologic induces and experient (SUE - VCX.con 11C, Takizaras is is complete. Warging exclusion 50) of the globagic produces complete (SUE - VCX.con 11C, Takizaras is is complete. Warging exclusion 50) of the globagic produces complete (SUE - VCX.con 11C, Takizaras is is complete. Warging exclusion 50) of the globagic produces complete (SUE - VCX.con 11C, Takizaras is is complete. Warging exclusion 50) of the globagic produces complete (SUE - VCX.con 11C, Takizaras is is complete. Warging exclusion 50) of the globagic produces complete (SUE - VCX.con 11C, Takizaras is is complete. Warging exclusion 50) of the globagic produces complete (SUE - VCX.con 11C, Takizaras is exclusion 50) of the globagic produces (SUE - VCX.con 11C, Takizaras is exclusion 50, of the sub-10C, Takizaras is exclusion 12C, the sub-10C, the sub

Source : Nicholas Institute for Env. Policy Solution

Thank You