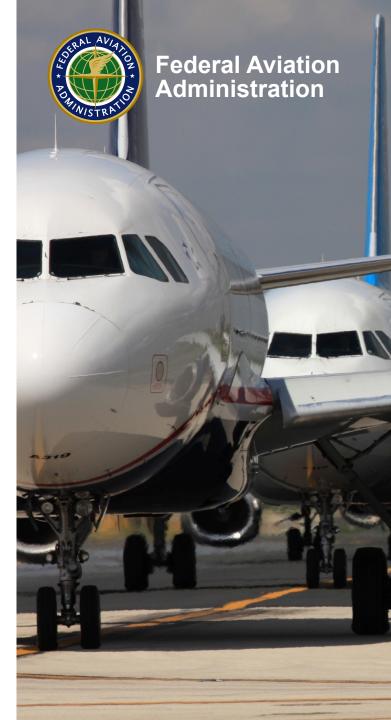
Wide Area Augmentation System (WAAS) Overview

By: Patricia Doherty


Director

Institute for Scientific Research

Boston College

To: UN/ICTP Workshop on the Use of Global Navigation Satellite Systems for Scientific Applications

Date: December 2014

Agenda

- WAAS Status and History
- Current Projects
- User Adoption
- Future Efforts

Wide Area Augmentation System

- WAAS is a combination of ground based and space based systems that augments the GPS Standard Positioning Service (SPS)
- WAAS provides the capability for increased availability and accuracy in position reporting, allowing more time for uniform and high quality worldwide air traffic management
- WAAS provides coverage over the entire National Airspace, with a precision approach capability at over 3,000 runway ends

3 Geostationary Satellite Links

2 Operational Control Centers

38 Reference Stations

3 Master Stations

6 Ground Earth Stations

WAAS Development Phases

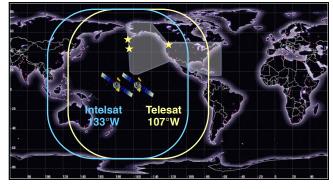
• Phase I: IOC (July 2003) Completed

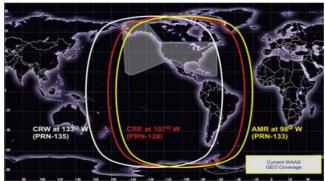
- Included Development of a robust safety architecture
- Included establishment of WAAS expert panel to evaluate potential integrity threats

Phase II: Full LPV (FLP) (2003 – 2008) Completed

- Completed a Safety Risk Management Decision (SRMD) to support LPV-200 (VAL of 35m)
- Expanded WAAS coverage to Mexico and Canada while modifying the System to address observed lonospheric threats

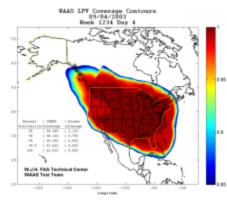
• Phase III: Full LPV-200 Performance (2009 – 2013)

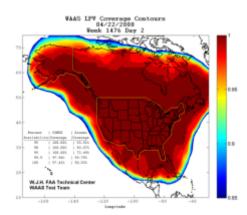

- Completed System updates to improve performance during moderate ionospheric activity
- Supported continuous monitoring of system data that contributes to continued integrity assurance
- Began transition of Second Level Engineering from contractor based to organic FAA capability
- Phase IV: Dual Frequency (L1,L5) Operations (2014 2044)
 - Includes the transition from use of L2 to L5 in WAAS reference stations
 - Infrastructure modifications to support future L1/L5 user capability
 - Support sustainment of WAAS GEOs

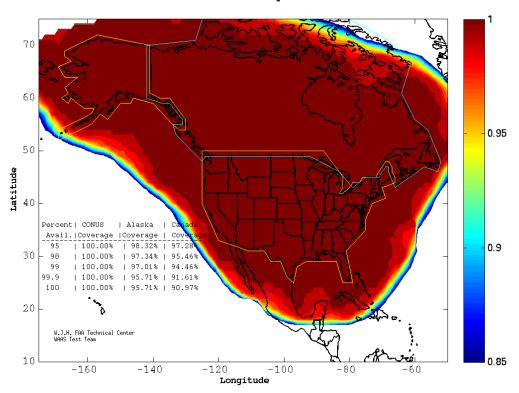


GEO Satellite Availability Improvements

- IOC WAAS (Commissioned system) utilized two Inmarsat satellites
 - Provided single satellite coverage over the majority of the U.S.
 - Removed from WAAS July 2007
- Replacement satellites launched in 2005
 - Intelsat (Galaxy XV) Operational November 2006
 - Telesat Canada (Anik F1R) Operational July 2007
- Implemented Gap-filler GEO
 - Inmarsat I4F3 (AMR) Operational December 2010






WAAS Coverage Improvements

2003 IOC – LPV Coverage in lower 48 states only

2008 Coverage - Full LPV 200 Coverage in CONUS (2 Satellites) WAAS LPV Coverage Contours 09/18/14 Week 1810 Day 4

2014 Coverage - Full LPV 200 Coverage in CONUS (3 Satellites)

WAAS Overview December 2014

GEO Sustainment

GEO 5/6 Satellite Acquisition

- Awarded GEO 5/6 Satellite Service Lease contract to Raytheon September 2012
- SatMex 9 satellite will host the WAAS GEO Satellite Payload
 - Orbital slot (117°W) will provide full coverage over CONUS and Alaska
 - Critical Design Review (CDR) completed July 2014
 - Scheduled for operations in the 2017 timeframe
- GEO 6 Satellite opportunities currently under investigation

Ground Based Updates

WAAS Reference Receiver (G-III)

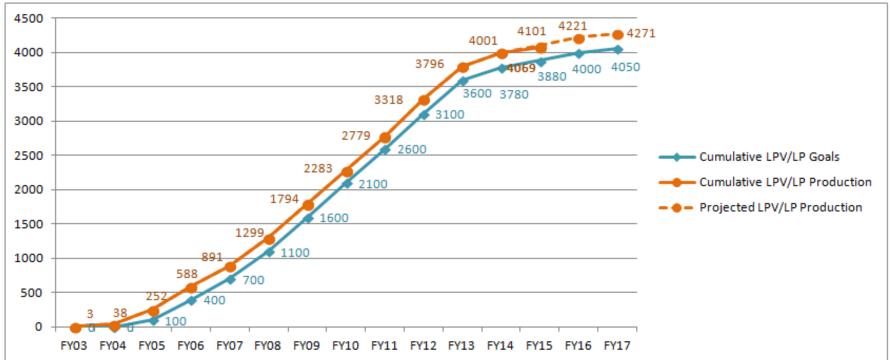
- Next Generation (G-III) receiver adds significant new capability and will support WAAS Dual Frequency upgrades in 2014 – 2019 timeframe
 - Tracks up to 18 GPS satellites and 8 SBAS satellites
 - Capable of tracking GPS L1C/A, L1C, L2C, L2 P(Y), and L5 signal types
 - Expandable to support additional GNSS signals in the future
- Current Status
 - Six G-III test racks installed into the field to support integration activities
 - 100 production receivers delivered to support fielding in FY2015 2016
 - Balance of receivers will be ordered in 1stQ FY15

WAAS Safety Computer

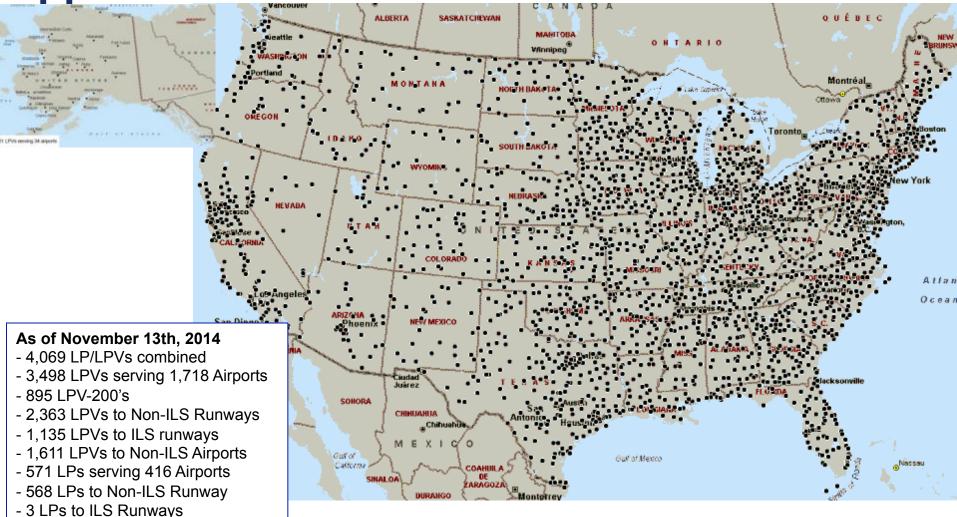

- The SC adds significant new capability and support to WAAS Dual Frequency upgrades
 - The SC will be capable of hosting either WAAS Master Station (WMS) application or the GEO Uplink Station (GUS) without changing the WAAS SC hardware or Infrastructure of software
- WMS type SCs
 - Preclude broadcast of Hazardously Misleading Information (HMI) to WAAS users
- Current Status
 - Verification Phase completed
 - Initial Pre-Production units delivered
 - Vendor contract extended to May 2015
 - Testing software and hardware to ensure error free operation

WAAS Communication Upgrade

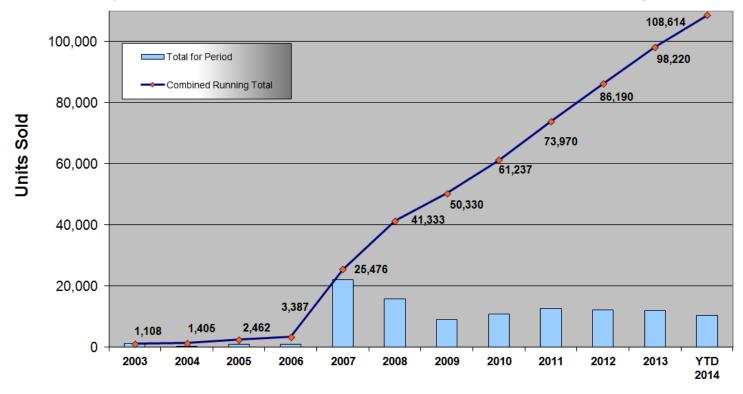
- Hardware procurement to address obsolescence at selected WAAS sites
- Upgraded circuit procurements for Operations Control Center's (OCC's) (National Operations Control Center [NOCC] &Pacific Operations Control Center [POCC]) and Core Node
- Successful Completion of Provisioning Conference (PCA)



SC Conceptual Design: Rearview


Annual LPV and LP Production

	FY03	FY04	FY05	FY06	FY07	FY08	FY09	FY10	FY11	FY12	FY13	FY14	FY15	FY16	FY17
Non-ILS Runway Ends	0	7	80	188	195	263	259	375	412	463	443	182	64	0	0
ILS Runway Ends	3	28	134	148	108	145	236	114	84	76	35	23	4	0	0
LPVs/LPs	3	35	214	336	303	408	495	489	496	539	478	205	68	0	0
Annual LPV/LP Goals	0	0	100	300	300	400	500	500	500	500	500	180	100	120	50
Cumulative LPV/LP Goals	0	0	100	400	700	1100	1600	2100	2600	3100	3600	3780	3880	4000	4050
Cumulative LPV/LP Production	3	38	252	588	891	1299	1794	2283	2779	3318	3796	4001	4101	4221	4271


Airports with WAAS LPV/LP Instrument Approaches

WAAS LPV Annual Avionics Sales

Garmin, Universal, Rockwell Collins, Avidyne, Cobham, Honeywell/CMC, IS&S and Thales WAAS Avionics Sales by Year

Reporting Period Data current as of October 31, 2014 Total combined avionics sales (all vendors): 108,614 units Program office estimate for total WAAS-LPV equipped aircraft: 78,045 (all vendors)

WAAS LPV Equipped Aircraft October 2014

Garmin

- GA Aircraft (See FAA Garmin Approved Model List (AML)). Most GA Part 23 aircraft.
- GTN series Lear 35/35A, 36/36A,24 Phenom 300 with G-3000

Universal Avionics

- 122 fixed wing and 12 helicopter types and models

RockwellCollins

39 Types and models

Honeywell /CMC Electronics)

22 types and models

Avidyne

- 6 types and models (Cirrus SR 20 & 22, Piper Matrix & Mirage, Piper Saratoga NX, and EA-500)
- IFD 540 WAAS LPV (STC complete July 2014 AML STC approved for over 1,000 aircraft makes and models)

Genesys Aerosystems (Chelton)

 Bell-407 & 412, Cessna 501, 550, Piper PA-42, Beechcraft C-90&A, EurocopterAS-350, AgustaAW109SP, Beechcraft T-34B, Kawsaka

Innovative Solutions & Support (IS&S)

- Eclipse 550/500
- Boeing 737-400 (pending)
- MD-88/90 (pending)

Thales

- Airbus A300-600ST (Beluga)
- Airbus A400M (Military)
- Airbus A350XWB pending

Transition to Performance Based Navigation

- In September 2008 the number of published LPVs surpassed the number of published ILSs
- As of August 2014 the number of published LPVs are more than twice the number of published ILSs
- In 2013 the FAA policy was to no longer publish any new CAT I ILSs
- In 2016 the FAA has committed to make a decision about the draw down of ILS based on WAAS implementation

WAAS – A Multi User System

- WAAS has become a relied upon utility for a number of nonaviation uses:
 - Shipping
 - Navigation of Harbors
 - Recreational Boating
 - Navigation of Channels
 - Location of Crab pots
 - Mapping & Survey
 - Precise location identification
 - Farming
 - Sub-meter accuracy for spreading, seeding and harvesting

Next Steps

Dual Frequency (DF)

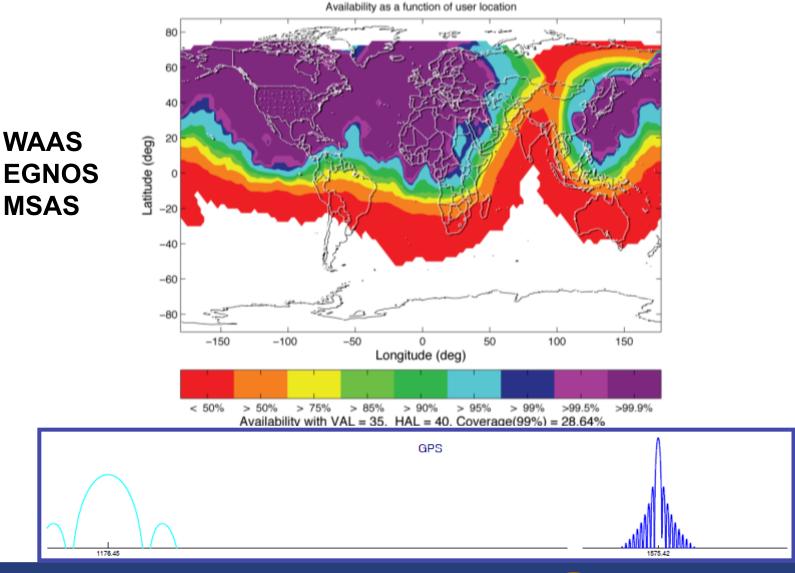
- Award a Dual Frequency Contract
- Development of DF WAAS MOPS capability
- Maintain legacy Single Frequency availability

Ground based infrastructure upgrade

- Safety Computer
- G-III Receivers
- Terrestrial Comm upgrade

Develop Dual Frequency User concepts

- ARAIM
 - Offline vs Online
- Dual Frequency Multi-Constellation (DFMC) SBAS
 - Beginning initial research and development
- Validate concepts and propose standards



Future Applications

- WAAS is an enabler for multiple FAA initiatives
 - Performance-Based Navigation (Area Navigation) (RNAV)
 - Required Navigation Performance (RNP)
 - WAAS meets the requirement for RNP AR as defined in FAA Advisory Circular 90-101A
 - No restriction due to temperature
 - Point in Space (PinS) procedures
 - Automatic Dependent Surveillance Broadcast (ADS-B)
 - WAAS is currently the only technology that meets all of the most stringent requirements for a positioning source for ADS-B

Future LPV-200 Coverage(Dual Frequency GPS)

WAAS Overview December 2014

Summary

- WAAS-provided messages improve the accuracy, availability and safety of GPS-derived position information
- WAAS results in safety and capacity improvements in the National Airspace System (NAS)
- WAAS will reduce FAA operations costs by enabling the decommissioning of some ground-based navigation aids
 - All new CAT I Approaches in the NAS shall be WAAS LPV Approaches
 - FAA committed to making a decision on the reduction of CAT I ILS in 2016
- WAAS provides a cost-effective means of integrating a precision approach capability into the cockpit
- Nearly 4,000 WAAS procedures are available with half published at runways that previously had no precision approach capability
- Continued support of International expansion of SBAS and adoption of future standards

