

The Abdus Salam International Centre for Theoretical Physics 50th Anniversary

Training on EGNOS-GNSS in Africa (TREGA)

X. Otero, C. Paparini, O.E. Abe, H.R. Ngaya, S. M. Radicella, B. Nava

UN / ICTP

- Definition of Sub-Saharan African scenario
- Analysis of SBAS performance
- Ionospheric effects on SBAS performance
- User case example
- Conclusions

TREGA training through research

- Main goal: Study a potential SBAS performance in the Sub-Saharan African region
- Scenarios of a SBAS system in Sub-Saharan Africa using real data during solstice and equinox months of 2013, characterized by high solar activity
- Analysis of SBAS system and user level performance and ionospheric conditions of the defined scenarios

Overview of GNSS stations in Africa

TREGA scenario

ID	Location	Network	Geo. Lat (°N)	Geo. Lon (°E)	Modip (°)
cggn	Toro (Nigeria)	NIGNET	10.12	9.12	-1.96
ouag	Ouagadoug ou (Burkina Faso)	AFREF/ IGS	12.35	-1.51	2.86
futy	Yola (Nigeria)	NIGNET	9.35	12.50	-3.34
bkfp	Kebbi (Nigeria)	NIGNET	12.47	4.23	3.50
ykro	Yamoussou kro (Cote d'Ivorie)	AFREF/ IGS	6.87	-5.24	-10.63
unec	Enugu (Nigeria)	NIGNET	6.42	7.51	-10.89
bjco	Cotonou (Benin)	AFREF/ IGS	6.23	2.27	-11.83
dakr	Dakar (Senegal)	AFREF/ IGS	14.75	-17.49	11.86
nklg	Libreville (Gabon)	AFREF/ IGS	0.35	9.67	-23.90
fg07	Sao-Tome (Soa-Tome)	SONEL	0.34	6.73	-24.60

http://solarscience.msfc.nasa.gov/SunspotCycle.shtml

APV-I performance for July 2013 24h

03-07-2013

LATITUDE

APV-I performance for October 2013 24h

EGNOS-like Processing Set v.

HPL vs HAL and VPL vs VAL for Measured Availability HPL vs HAL and VPL vs VAL for Measured Availability 2013/10/30 00:00:00 - 2013/10/30 23:59:59 GEO: 120 SBAS msgs: 86400 2013/10/30 00:00:00 - 2013/10/30 23:59:59 GEO: 120 SBAS msgs: 86400 > 99.9% 99.9% (SEI) 14 > 99.6% 99.6% > 99.0% » 99.0% 13 > 97.5% > 97.5% 12 12 NG > 95.0% > 95.0% > 90 0% 11 > 90 0% > 75.0% > 75.0% 10 10 NG2 > 50.0% > 50.0% > 20.0% > 20.0% > 10.0% LATITUDE > 10.0% < 10.0% < 10.0% AF5 not valid data (AF5) not valid dat NG3 (AF4) 6 6 6 9 9 7 6 7 6 6 7 6 9 9 9 7 9 9 7 Ŕ ó 0 1 2 3 4 5 9 3 9 ÷. ģ 112 12 13 LONGITUDE LONGITUDE ECLAYR v8.0.0 ECLAYR v8.0.0 Produced by GMV Produced by GMV

30-10-2013

Low-latitude algorithm

APV-I performance for October 2013 14h (4:00 – 18:00 UTC)

EGNOS-like Processing Set v.

Low-latitude algorithm

30-10-2013

Study of lonospheric Effects

Features of lonosphere over Africa (I)

- Sub-Saharan Africa lies under the Ionospheric Equatorial Anomaly (IEA)
- The IEA is characterized by two crests of electron density at ±20° north and south of the geomagnetic equator and a minimum at this equator

Features of Ionosphere over Africa (II)

- IEA is strongly influenced by:
 >solar and geomagnetic activity
 >daily, day-to-day and seasonal variations
 >geomagnetic storms, disturbances and irregularities
- The IEA development maximizes during equinoxes (March, April and September, October) and it is lower during solstice months
- Large number of indipendent parameters can be used to study lonosphere variability and its causes:
 - Rate of Change / Rate of Change Index: ROT / ROTI
 - >geomagnetic indices: Kp, Dst, ap
 - >solar parameters: solar wind speed, IMF, Bz

July 2013 – Low Latitude Algorithm – 24 hours graphs

Effect of the lonospheric Irregularities on SBAS Diurnal variation of VTEC at different geomag. latitudes (October 2013)

ouag 2.86 deg

Signature of storm on vTEC during October 2013 storms

Rate of Change of TEC (ROT) / Index (ROTI)

- Basu et al.(1999) referred to ROT and ROTI as a good proxy to estimate ionospheric scintillation
- This parameter was used by Jiyun et al. (2006) to deduce the presence of temporal gradient
- Chandra et al. (2009) as well used ROT to identify the signal which suffer severely from ionospheric gradient
- Ionospheric scintillation and gradient are more prevalence in low and equatorial region than middle and high latitudes
- This was estimated to study the behaviour of the ionosphere and its impact on GNSS-SBAS performance

Mean ROTI of all visible satellites for ouag station at 15° elevation mask

July 2013

October 2013

ROTI for all visible satellites in July 2013 at 15° elevation mask

Storm time with inhibition of

Storm time with enhancement

ROTI for all visible satellites in October 2013 at 15° elevation mask

Storm time with inhibition of

Comparison between monthly system status and monthly ROTI July 2013 October 2013

% UTC(h) Month: October 0.9 0.8 0.7

Analysis of user level performance with low-latitude algorithm

Selection of an
 Independent station
 located at ACCRA
 (Ghana)

- Analysis of user performance at two storms periods in October 2013:
 - October 9th 2013
 - **October 14th 2013**

09-10-2013

30-10-2013

09-10-2013 (4:00 – 18:00 UTC)

30-10-2013 (4:00 – 18:00 UTC)

09-10-2013

30-10-2013

Conclusions

- Results indicate that during the solstitial month, the SBAS system could provide 99% APV-I availability for 24 hours in a certain area of service while in the equinoctial month this would be generally reduced to 14 hours from 04:00 to 18:00 UTC. This is critically in acordance with the level of irregularities.
- The study shows that ROT/ROTI parameters are a good proxy for the presence of ionospheric irregularities and their effect on the system performance.
- It is expected that the low-latitude algorithm could be optimized for the African region improving its performance.
- The design of a better distribution of stations by means of the assessment with a synthetic ionosphere (produced with NeQuick) could also improve the system performance.

Thank you for your attention