CHARACTERIZING ECOSYSTEM RESPONSE TO CLIMATE CHANGE IN SOUTH AFRICA USING EARTH OBSERVATION TECHNOLOGY

B.M. Petja^{1,2}, P.N. Kephe² and T.A. Kabanda³

1. Water Research Commission, Pretoria, South Africa

 Risk and Vulnerability Science Centre, University of Limpopo: Turfloop Campus, South Africa
 Department of Geography and Environmental Science North West University: Mafikeng Campus, South Africa

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

R

Outline

- Introduction and Climate Overview
- Earth Observation Applications (Natural Vegetation and Agro-ecosystems)
- Adaptive Options and Interventions
- Concluding Remarks

Introduction

- Water is critical for development, economic growth and better life.
- Climate plays a significant role to the country's economic development.
- Natural and anthropogenic activities drives the change in climate by altering the Earth's energy budget.
- The IPCC recognizes a clear cause and effect relationship between the enormous growth in the emissions of GHGs, escalating global average temperatures and extreme weather events.
- This therefore calls for positioning and reorientating various sectors in order to realign development with the changing climate (structural and economic reforms).
- Applications of remote sensing are expected to contribute to guidance, advice and direction for reorientation and developmental response in light of the changing climate.

Average annual rainfall & water resource situation

South Africa is characterized by a skewed distribution of rainfall, high solar radiation and high evaporation rate

- Rainfall high: 1500mm N & E; reduces towards S & W: 100mm;
- Water availability is accordingly skewed in terms of distribution (estimated at 650 billion m³)
- Evaporation rates far exceeds precipitation (relatively higher in areas where it rains less)
- Water is not always fit for use, even under natural conditions
- This translates into water <u>scarcity</u> (even before taking climate change or human induced impacts into account)
- Increased occurrence of extreme climate events.

Water and SA's economic hubs

SOURCE: National Water Resource Strategy; DWAF; 2030 Water Resources Group

Projected change

RCP 4.5: Annual temperature change (°C) relative to 1985-2005 to 1985-2005

RCP 4.5: Annual rainfall change (mm/month) relative

SAWS WRC project 2247

rnd stand dev 1976-2094 MPI 240 220 200 180 160 140 120 100 80 60 2010 2020 2030 2040 2050 2060 2070 1980 1990 2000 2080 2090

Predictability of hydroclimatic variability over eastern South Africa under climate Change

WRC Project K5/2457

Projected changes in the 11-year moving average of summer rainfall (top) and the variability of rainfall (bottom) over the mega-dam area of South Africa under low mitigation, for a single downscaling. WRC K5/2457 considers the largest ensembles of projections generated for this region to date.

CSIR-CSIRO-CHPC-WRC

Drought patterns over Southern Africa

These are the 12 major types (or patterns) of regionally extensive droughts in southern Africa.

The colours show the values of a drought index (Standardized Evapotranspiration Index). The index is calculated from surface water balance (rainfall minus potential evapotranspiration). Hence, it account for the influence of global warming. A negative value indicates a dry condition (drought), while a positive indicates a wet condition.

The four drought patterns at the edges show the extremes cases of drought patterns:

Top-left => The entire region is experiencing drought
Bottom-right => The entire region is experiencing a wet condition
Top-right => The northern half is experiencing a wet condition, while the southern half is experiencing drought.
Bottom-left => The northern half is experiencing drought, while the southern half is experiencing a wet condition.

SA's vulnerability to climate change

all all the second	System/ Conditions	Changes			
	Water	already fully allocated; reductions in availability, increased frequency of extremes			
	Agriculture	Food security, most scenarios suggest adverse impacts in the agricultural and forestry sectors, with emphasis to small-scale farmers,			
	Human health	strong interactions with environmental quality and current disease burden			
	Extreme events	weather-related impacts are already exacerbated by poor land management			
	Natural resources	degradation trends likely worsen without addressing sustainable management issues; opportunities for increasing resilience of rural and urban communities			
	Human settlements and livelihoods	emerging understanding suggests significant and adverse impacts			

5

Earth Observation Applications

CLIMATE CHANGE AND NATURAL FOREST DECLINE

Climatic trends

CE

Climatic trends...

Temperature

Ecosystem Response (VI)

Change detection

CAUSAL FACTORS: Anthropogenic Activities in the Soutpansberg

Observing and Monitoring Changing Climate

Inter-annual shifts in rainfall distribution

Cumulative NDVI

85/86 season

Rainfall

No Diata

87/88 season

20

2500 - 5000 No D ata

Sparse/Low vegetation 987 - 1972 1973 - 2959 2960 - 3945 Moderate vegetation 4932 - 5918 5919 - 6904 6905 - 7890 Dense vegetation No Data

0 - 100

100 - 200

200 - 300

300 - 400

400 - 500

500 - 600 600 - 700

700 - 800

800 - 1000

21

1000 - 1500

2500 - 5000 No D ata

22

NoData

Pasture Productivity under different Climatic Regimes

- Production areas demarcated and managed in line with projected changes.
- Threat to degradation quantified in relation to stocking density.

Climate and Agricultural Production

- Positive relationship between climate change drivers and agricultural production.
- A change in climate may affect agricultural production negatively or positively.
- Crop stress, pest and diseases, crop failure etc.

Nesamvuni et al, 2009, Lekalakala, 2011

Monitoring crop response

Resultant Impacts on Crops

- Crop responses to temperature, precipitation, CO₂.
 - Increased crop vigour (positive response)
 - Crop mortality (extreme temperatures decreased yields)
 - Flood damage
- Changing water availability for irrigation.
- Changing lengths of growing periods and reliability of rainy season.
- Plant diseases.

BUSH ENCROACHMENT

Normalised Difference Vegetation Index 1990303

Adaptive Options and Interventions

- Routine applications of EO technology in operational management.
- Integration of climate change adaptation strategies into development and spatial plans.
- Protection of vegetated areas affecting local climate regimes.
- Afforestation and agroforestry projects in deforested areas.
- Land use change.
- Land use policy should address mechanisms for mitigation and adaptation to the challenges brought by changes in the climate.

Adapted Land Use in light of the Changing Climate

- Differentiated land use.
- Classified biomes

Land Cover

Grassland

Cultivated

Wetlands

Shrubland

 \mathbf{N}

Waterbodies

Barren Rock

Forest Plantations

Sensitive ecosystems

Site-Specific Development Planning

Soil Form

STERKFONTEIN 1

CLIMATE										
Mean Annual Rainfall		Rainfall Coeff Variation	Refer Crop Evaporation	Mean Annual Temp	Mean Growth Season Days	Growth Season Start	Growth Season End			
544 - 572		26.5	1419.00	16	166 - 170	Oct 06 - Oct 08	Mar 23 - Mar 25			
		Jan	Feb	Mar	Apr	May	Jun			
Avg Montly Rainfall		170.00	115.00	85.00	28.00	25.00	15.00			
Avg Min Daily Temp		13.63	13.80	12.80	9.80	6.47	3.85			
Avg Max Daily Temp		25.83	25.47	24.83	22.87	20.97	18.30			
Avg Mean Daily Temp		20.37	19.73	18.93	16.27	13.93	10.63			
		Jul	Aug	Sep	Oct	Nov	Dec			
Avg Montly Rainfall		14.00	17.00	25.00	125.00	149.00	152. <mark>00</mark>			
Avg Min Daily Temp		2.67	4.97	8.85	10.80	12.38	13. <mark>55</mark>			
Avg Max Daily Temp		18.83	21.13	24.40	24.57	24.73	26.0 <mark>0</mark>			
Avg Mean Daily Temp		11.20	12.77	16.27	18.33	19.03	19.7 <mark>7</mark>			
Heat Units		Average Summer Temp			Average Winter Temp					
Winter	Summer	Min	Мах	Avg	Min	Max	Avg			
516.67	1516.67	13.35	25.51	19.43	4.49	19.81	12.15			
			CRC	OP SUITABILITY						
Soil Unit	Field Nr	Area (Ha)- Effective	Optimal	Suitable-Optimal	Suitable	Marginal-Suitable	Marginal			
Av60	St1-1	10.31	Potatoes	Onions; Drybeans	Avo; Tomatoes; Okra; Cassava; Kikuyu	Butternut; Pepper Dew; Maize; Sorghum; Millet; Canola; Panicum: Cenchrus	Spinach; Sunflower; Ground Nuts; Lucerne			
Cv80	St1-4; St1-5	20.34	Potatoes	Onions; Spinach; Okra; Drybeans	Tomatoes; Butternut; Pepper Dew; Cassava; Maize; Sorghum; Millet; Ground Nuts; Kikuyu	Canola; Sunflower; Panicum; Cenchrus	Banana; Lucerne			
Hu100	St1-2	74.25	Potatoes; Sorghum	Onions; Spinach; Okra; Cassava; Maize; Millet; Drybeans; Kikuyu	Tomatoes; Butternut; Pepper Dew; Canola; Sunflower; Ground Nuts; Panicum; Cenchrus	Lucerne	Banana; Vetch			
Hu60	St1-6	34.97	Potatoes	Onions; Drybeans	Tomatoes; Okra; Cassava; Kikuyu	Butternut; Pep <mark>per</mark> Dew; Maize; Sorghum; Millet; Canola; Panicum; Cenchrus	Spinach; Sunflower; Ground Nuts; Lucerne			
Hu80	St1-3; St1-9	69.40	Potatoes	Onions; Spinach; Okra; Drybeans	Tomatoes; Butternut; Pepper Dew; Cassava; Maize; Sorghum; Millet; Ground Nuts; Kikuyu	Canola; Sunflower; Panicum; Cenchrus 33	Banana; Lucerne			
Lo40	St1-7; St1-8	4.12	None	Onions	Cassava; Drybeans	None	Maize; Sorghum; Millet; Kikuyu			
Total: 213.39										

Concluding remarks

- Climate plays a significant role to rural and regional development.
- Increased inter-annual and intra-seasonal variability climate threaten most development sectors.
- Changes and shifts in climate => socio-economic, agricultural and environmental spheres
- EO technology presents more opportunities to characterize and observe the frequency of climatic anomalies and variation to aid in mitigation and adaptation strategies.
- More action is required at local scale in terms of adaptive response and mainstreaming.
 - United sectoral and inter-sectoral response will defeat the might of climate change.

Acknowledgements

- South African National Space Agency. •
- Agricultural Research Council. •
- UNOOSA (Travel Support). •

E-BOPHIRIMA NOORDWES VERSITEIT