Risk and Vulnerability Assessment of Flood Prone Urban Areas of Pakistan

IRFAN AHMAD RANA

REGIONAL AND RURAL DEVELOPMENT PLANNING,

SCHOOL OF ENVIRONMENT, RESOURCES AND DEVELOPMENT

irfan.ahmad.rana@ait.asia irfanrana90@hotmail.com

Ekistics – Science of Human Settlements

Charleston (City)

Manila (Metropolis)

London (Megalopolis)

London 1914

London Today

Prediction

Source: Bhatti, Tripathi and Rana, Habitat International 2015

Flood Hazards in Pakistan

- Climate Change
- Monsoon (70-80% of rains in three months, July Sept)
- River flooding is most common along the Indus in the Sindh and Punjab provinces
- Potential risk from Glacier Lake Outburst Floods (GLOFs) extend to the Northern Provinces, Khyber Pakhtunkhwa and Balochistan.
- El Niño/La Niña-Southern Oscillation

Flood Damages in Pakistan

Annual Flood Report 2010, Federal Flood Commission (2011)

Uncertain Future in Pakistan?

- Mean rainfall in the arid plains of Pakistan and the coastal belt has decreased by -10 to -15% since 1960 while the mean rainfall over the same time period in Northern Pakistan has increased.
- Expected temperature increase in Pakistan as whole is higher than the expected global average increase.
- Non existent sea-level rise and storm-surge scenarios for Pakistan coastlines.
- Country's varied topography means that many critical regions are left uncovered.
- No meteorological stations exist on the some river basins, which severely limits the utility of modelled river flows under a changing climate.

Dilemma of Climate Change Adaptation and Disaster Risk Reduction

CCA	or	DRR
IPCC	or	UNISDR
Paris Agreement	or	Sendai Framework
Global Models	or	Community Based Disaster Risk Models

An integrated approach????

Revisiting Concepts of Risk

- The potential disaster losses in lives, health status, livelihoods, assets and services, which could occur to a particular community or a society over some specified future time period" (UNISDR, 2009).
- The probability of a hazard occurring and creating loss (Smith & Petley, 2008).
- A natural hazard converts into a disaster only when it affects a "vulnerable" population (*Uitto, 1998*), and where proper mitigation systems are absent (*Chadha et al., 2007*).
- It often varies among:
 - individuals
 - communities
 - and regions

Types of Risks in contexts of Natural Disasters

Actual Risk

- Identifies vulnerabilities and capacities of disaster prone communities.
- Based on hazard, exposure, sensitivities and capacities of households

Perceived Risk

- Based on exposure, past experiences and individuals/community understanding and cognitive thinking.
- Way the potential victims understand, which may not be necessarily true.

Both are simultaneously used for RISK ASSESSMENT for effective disaster risk reduction strategies

Revisiting Concepts of Vulnerability

- A multidimensional concept
- The inability (of a system or a unit) to withstand the effects of a hostile environment
- Vulnerability to climate change is the degree to which geophysical, biological and socio-economic systems are susceptible to, and unable to cope with, adverse impacts of climate change

Types of Vulnerability

- **Physical Vulnerability:** The vulnerability of an area depending on geographic proximity to the source.
- Social Vulnerability: The inability of people, organizations and societies to withstand adverse impacts to hazards due to characteristics inherent in social interactions, institutions and systems of cultural values.
- Economic Vulnerability: The potential impacts of hazards on economic assets and processes.
- •Attitudinal Vulnerability: A community which has negative attitude towards change and lacks initiative in life resultantly become more and more dependent on external support.

Environmental Vulnerability: The potential impacts of events on the environment.

General Terminologies

Hazard	or	Exposure
Vulnerability	or	Risk
Sensitivity	or	Fragility/Susceptibility
Coping Capacity	or	Adaptive Capacity

Confused???

Risk and Vulnerability

 Disaster Risk (R) is conceptualized often as function of hazard and vulnerability (Wisner, 2004; UNISDR 2004), and expressed as:

R = f(h, v)

where, H = Hazard, V = Vulnerability

Intergovernmental Panel for Climate Change (IPCC) defines vulnerability as a function of exposure, sensitivity and capacity (IPCC, 2012), and expressed as:

where, V = Vulnerability, E = Exposure, S = Sensitivity, C = Capacity

Components of Vulnerability and Risk

- Hazard: A potential of natural geophysical or hydro-meteorological events that may cause damages to an area over a specific period of time (*Birkmann, 2006*).
- **Exposure:** The presence of susceptible elements. (IPCC, 2012)
- Sensitivity: A tendency/degree of elements at risk that can come to any harm as a result of the hazard. (Birkmann et al., 2013)
- Capacity: Ability of people, organizations and systems, using available skills and resources, to face and manage adverse conditions, emergencies or disasters. (UNISDR, 2009)

Coping and Adaptive

Models for assessing Vulnerability and Risk

Vulnerability Assessment

Risk Assessment

- Hazards of place vulnerability model
 Risk Triangle Model (Crichton, 1999) (Cutter, 2000)
- Turner's vulnerability framework (Turner et al. 2003)
- Bogardi, Birkmann and Cardona
 Framework (Bogardi et al. 2004)
- Spheres of Vulnerability (Birkmann, 2006)

- Davidson's/Bollin's Disaster Risk Model (Davidson 1997; Bollin et al. 2003)
- Pressure and Release Model (Wisner et al., 2004)
- Methods for the Improvement of Vulnerability Assessment in Europe (MOVE) framework (*Birkmann et al.* 2013)

Defining Disaster Risk Model

In, Disaster Risk Science: (UNISDR)

Disaster Risk = Hazard x Vulnerability

In, Climate Change Adaptation: (IPCC)

Vulnerability = (Exposure x Sensitivity)/Capacity

Thus,

Risk Assessment = Hazard x Exposure x Sensitivity

Capacity

(Rana & Routray, 2016)

Sampling

1. Metropolitan

Population: >1 million

City: Rawalpindi

Town: Rawal Town

UC : Dhok Ratta

3. Medium Town

Population: < 500,000

City: Muzaffargarh

Town: Muzaffargarh

UC : Khangarh City

2. City

Population: 500,000 to 1 million

City: Sialkot

Town: Sialkot

UC : Hajipura

- Multi-stage sampling
- 210 samples
- 70 from each urban community

Hazard Indicators

Indicators	
Frequency of flood	
(in number)	
Height of flood	
(in meters)	
Duration of flood	
(in days)	
Likelihood of Inundation	
(very high, high, moderate, low,	
very low)	
Damages of Previous flood	
(very high, high, moderate, low,	
very low)	

Exposure Indicators

Indicators		
Household Size	Building Height	
(in number)	(Number of stories)	
Family Type	Building Age	
Households with injury/death in previous floods	Building Construction Materials	
ocation of the House	Household's level of understanding National Warning System	
Housing Type		

Sensitivity Indicators

	Indicators
Dependency Ratio	Households living in rented houses
(Dependents to Total	
household size)	
Female Male Ratio	Distance to nearest medical facility
	(in kilometers)
Households having family	Households of access to drinking water (%)
members	
with chronic illness/	
pregnancy or disability	
Household living in	Households not having access
community	to improved sanitation
(in years)	
Average Monthly	Households not getting Electricity
Household's Income	
(in Amount)	
Occupation of Household	Households having no means of communication (TV,
head	Radio, Telephone, Mobile)
Households who have	Households having no
borrowed	means of Transportation
for loan anyone in last ten	
vears	

Capacity Indicators

Indicators				
Household head's education level	Households having land/house outside the flood prone community			
Households who have experience with floods	Households with family member employed outside flood prone area			
Households having family member who can swim	er Strength of community cooperation in disaster response			
Households having family member who has First Aid Knowledge	Households aware emergency shelter and routes			
Households having multiple sources of livelihood options	Households that have not gone to their local government for assistance in the past 12 months			
Number of Earning Members in Household	Frequency of public awareness programs/ Drills attended by HH member (in number)			
Average Monthly Households Savings (in. Amount)	Availability and circulation of emergency plans to households			
Households having insurance (Life, Health, Building)				

Developing Indices

- Using Social Scaling Technique
- Assigning weights to classes (varies from 0.2 to 1)
- Computing Weighted Average Index (WAI)
- WAI = $(W_1 + W_2 + \dots W_3)/n = \sum_i^n W_i/n$

Disa	ster Risk Component	Levels of Measurement using Weights				
		1	0.8	0.6	0.4	0.2
	Hazard	Very High	High	Moderate	Low	Very Low
	Exposure	Very High	High	Moderate	Low	Very Low
	Sensitivity	Very High	High	Moderate	Low	Very Low
	Capacity	Very High	High	Moderate	Low	Very Low

Risk and Vulnerability Assessment

Risk Index (RI) and Vulnerability Index (VI) is calculated using Hazard Index (HI), Exposure Index (EI), Sensitivity (SI) and Capacity Index (CI):

$$RI = \frac{HI \times EI \times SI}{CI}$$
 and $VI = \frac{EI \times SI}{CI}$

- HI = $\sum_{i}^{n} HW_i$ /n
- $EI = \sum_{i}^{n} EW_{i} / n$
- $SI = \sum_{i}^{n} SW_{i} / n$
- $CI = \sum_{i}^{n} CW_{i} / n$
- W_i is the weight value of ith variable, *n* is number of variables

Findings

Findings for DRR

Findings for CC

Findings

- Households in study areas are coping with flood risk and still living there despite high exposure and sensitivity.
- Significant difference in levels of vulnerabilities and capacities in metropolitan, city and medium town.
- Metropolitan is less exposed to floods but communities' vulnerabilities are higher.
- Smaller cities are more exposed but less vulnerable due to better coping mechanisms and capacities.
- Proper maintenance, de-sedimentation and regular cleaning of Nullahs
- Strict urban planning regulations to restrict future urban growth in floodplains.
- Most of respondents were unware of climate change and disaster risk reduction concepts.

Policy Recommendations

- Dedicated District Disaster Management Authority is needed.
- No comprehensive urban development plan at national, provincial and regional level.
- Some urban development plans for major cities but they all lack disaster risk and climate change adaptation component.
- Unclear Risk/Vulnerability Assessment methodology in disaster management/Climate Change framework of Pakistan
- •An inspiration is needed to a light sense of self preservation and preparedness to participate in government initiatives.

Global Challenge

- Same terminologies and interpretations in CC and DRR
- Generally, RS only used for hazard assessment and damage loss estimation.
- Integrated Spatial data infrastructure. (including socioeconomic data) of disaster prone communities.

References

- Birkmann, J. (2006). Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions. In J. Birkmann (Ed.), *Measuring vulnerability to natural hazards : towards disaster resilient societies* (pp. 9– 54). Tokyo: United Nations University Institute for Environment and Human Security (UNU-EHS). doi:10.1111/j.1539-6975.2010.01389.x
- Birkmann, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S., ... Welle, T. (2013). Framing vulnerability, risk and societal responses: the MOVE framework. *Natural Hazards*, 67(2), 193–211. doi:10.1007/s11069-013-0558-5
- Bogardi, J., & Birkmann, J. (2004). Vulnerability assessment: the first step towards sustainable risk reduction. In *Disaster* and Society–From Hazard Assessment to Risk Reduction (pp. 75–82). Berlin: Logos Verlag.
- Bollin, C., Cárdenas, C., Hahn, H., & Vatsa, K. (2003). Disaster risk management by communities and local governments. Washington D.C. Retrieved from http://publications.iadb.org/handle/11319/4642
- Chadha, R. K., Papadopoulos, G. A., & Karanci, A. N. (2007). Disasters due to natural hazards. Natural Hazards, 40(3), 501–502. doi:10.1007/s11069-006-9010-4
- Crichton, D. (1999). The risk triangle. In J. Ingleton (Ed.), *Natural Disaster Management* (pp. 102–103). Leicester: Tudor Rose.
- Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737. doi:10.1111/0004-5608.00219
- Davidson, R., & Shah, H. (1997). An urban earthquake disaster risk index. John A. Blume Earthquake Engineering Center, Stanford University. Retrieved from https://stacks.stanford.edu/file/druid:zy159jm6182/TR121_Davidson.pdf

References

- Diouf, A., & Gaye, A. T. (2015). A methodological framework for building an index for vulnerability assessment in rainfed agriculture. In W. L. Filho (Ed.), Handbook of Climate Change Adaptation (pp. 3–15). Berlin: Springer Verlag. doi:10.1007/978-3-642-38670-1_1
- Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change-A case study in Mozambique. *Global Environmental Change*, 19(1), 74–88. doi:10.1016/j.gloenvcha.2008.11.002
- IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139177245
- Rana, I. A & Routray, J.K. (2016). Actual vis-à-vis perceived risk of flood prone urban communities of Pakistan. *International Journal of Disaster Risk Reduction.*
- Smith, K., & Petley, D. (2008). Environmental Hazard. Assessing risk and reducing disaster. (5th ed.). New York: Routledge.
- Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., ... Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. *Proceedings of the National Academy of Sciences of the United States of America*, 100(14), 8074–8079. doi:10.1073/pnas.1231335100
- Uitto, J. I. (1998). The geography of disaster in megacities: A theoretical framework. Applied Geography, 18(1), 7–16.
- UNISDR (2009). UNISDR Terminology. Geneva
- Wisner, B., Blaikie P., Cannon, T., & Davis, I. (2004). At Risk. Natural Hazards

THANK YOU