New findings using VLF data from SAVNET and Kannuslehto radio receivers

E.L. Macotela¹, J. Manninen¹, T. Turunen¹, J-P. Raulin² (1) Sodankylä Geophysical Observatory, University of Oulu, Finland (2) Centro de Radio Astronomia e Astrofisica Mackenzie, Universidade Presbiteriana Mackenzie, Brazil

UN/US Workshop on ISWI 2017

INTRODUCTION

Introduction

Tides

Planetary waves

Atmospheric waves

Stratosphere

Troposp

30 km

Gamma ray bursts

VLF waves propagate efficiently over long distances inside a natural waveguide known as the Earthionosphere waveguide

Introduction

INSTRUMENTATION AND DATA

Instrumentation and Data: SAVNET

Two square loop antennas of 3m by side and one vertical antenna

Instrumentation and Data: KANNUSLEHTO

Two square loop antennas of 10m by side

Wideband recorded systems First light: 2006

Record **all** transmitting signals between 0.2 and 39 kHz

Propagation paths of transmitter signals

LOWER IONOSPHERE SENSITIVITY DAYTIME

Methodology

Methodology

Results: Ionospheric sensitivity

NATURAL EMISSIONS OBSERVED IN THE FREQUENCY BAND 25-37 KHZ

Methodology

Types

	2013		2014		2015	
Occurrence	16-7 UT	13 (40) 3	16-7 UT	26 (58) 4	16-4 UT	19 (91) 3
Polarization	13 LHP	3 RHP	25 LHP	13 RHP	19 LHP	4 RHP
Total power [dB]	12-20	16-18	14-25	14-25	14-26	17-26
Duration [min]	10-150	10-100	10-130	10-130	10-250	30-210
Angle of arrival [?]	140-170	150-160	140-180	120-180	120-180	150-160

CONCLUSIONS

CONCLUSIONS

- We found that the variation of the ionospheric sensitivity is anti-correlated to the solar activity cycle.
- Our result is important for identification of the minimum fluence that a given external source of ionization must overcome in order to cause a measurable disturbance in the daytime lower ionosphere.
- We have identified 9 types of natural emissions observed between 25-37 kHz.
- Some of the events are also observed at frequencies between 1-10 kHz.
- Next task: possible sources of natural emissions observed between 25-37 kHz will be identified.

Thank you very much for your attention