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Space Weather Events

Extreme events*
September 1859
Extensive impact — worldwide
March 1989
Electric power - Quebec, New Jersey
May 1921
Submarine cables, electric lines, - N. America, Europe

October-November 2003
Satellite anomalies, navigation systems, power grid, ..

“...more coordinated international communication and
coordination of warnings of extreme space weather
events.”

* UN CPUOS, Space weather Special report..2017. A/AC.105/1146



Time to restore service after the event
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Amount of warning time before the event

C = cyber attack (ranging from state/pro
on left to good hacker on right)

D = drought and associated water
shortage

E = earthquake (in some cases with
warning systems)

F = flood/storm surge

H = hurricane

| = ice storm

O= major operations error

P = physical attack

R = regional storms and tornados

S = space weather

T =tsunami h

V = volcanic events

W= wild fire

Enhancing the Resilience of the Nation's Electricity System
NASEM, 2017 http://nap.edu/24836



Space Weather Impacts:
Disaster Risk Estimation
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Global Risks Landscape 2015
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The Global Risks Report 2015, World Economic Forum, Davos



Global Risks Landscape 2017
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Disaster Risk Estimation

Disaster

CLIMATE /' Vulnerability DEVELOPMENT

Natural Disaster Risk
Variability Management
Weather and f’
PTSN' DISASTER
' ‘ Events RISK
Anthropogenic N Climate Change
Climate Change N Adaptation

)

Disaster Risk Management and Climate Change Adaptation
(IPCC SREX 2012)

Greenhouse Gas Emissions

Risk=Rate x Vulnerability x Consequence



Extreme Events

Extreme events in highly correlated system
with multiple components

Emergence from

gradual evolution (long-range correlations) or
triggered (directly driven)

|dentification of processes that can trigger

Space weather multiple components that
require different physics

Integrative modeling



Extreme Space Weather

Fundamental Processes in Space Weather
e Multiple components that require different physics

e Plasma processes of relevant phenomena — essential for
numerical simulations

(first-principle : plasma physics)
e Statistical nature — essential to predictability of extreme
events

(first-principle : nonequilibrium statistical physics)
e Data-driven modeling — effective tools for quantitative
predictions
(first-principle: complexity science)
Integrative modeling



Reconstruction of Dynamics

_ _ Actual

“Geometry from a time series” S

(Packard et al., PRL, 1980)

Embedding theorenrakens, 1981) \
Time series dat(t) | |
Time-delay embedding: | ” /

() = X(t; + (k-1)7)
Reconstructed space:

X = {x(8), %(t), Xa(t), -}

Time series data

(Broomhead and King, Phys. A, 1986)
First prediction of space weather
US National Report to IUGG 1991 - 1994
“Assessing the magnetosphere's nonlinear behavior:
Its dimension is low, its predictability, high”,
Sharma, Rev Geophys., 1995.



Space Weather Forecasting
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Solar wind
conditions

Distribution
of past events

Predicted and actual AL; EEE

Conditional probabilities, g,
Ukhorskiy et al., 2004
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Near-real time forecasts using Solar wind datalafACE, DSCOVR):
www.astro.umd.edu/spaceweather



Long Range Correlations (LRC):
Hurst Exponent

Fluctuation functions
F(t) ~ ¥
O< H<1

 Auto-correlation: C(t)~t™?, H=1 _g

e Spectral density: PSD(f)~f P, H = (321)

12



LRC and Extreme Events

Tagqu’s Theorem

LRC drives “Heavy tail behavior”
(3—9)

—
O characterizes the “thickness”
of the tail of the distribution -
Tail index.

H =

Probability Distribution

Magnitude of events

Tagqu et al,, (1986) 73-89. Birkhduser: Boston.

13

=Normal Distribution

Levy Distribution
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Probability distribution of AL index

Geomagnetic Disturbance:
Probability Distribution Function
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Heavy-tail distribution of frequency
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Geomagnetic Disturbance:

10°E

10'E

AL Index

10°

x (=AL (in nT))

Distribution of frequency vs.
event size for 1-min AL data
for 30 years.

Estimates on Large Events?



Crossover Analysis - Hyperbolic Regression
AL Index & Solar Wind

AL and Solar wind data o
(2000-2013) T AL Mg ™ 08
55 — — — AL Asymp]
e i
PR AL Terossover g™ O3
— — — W Ayl
H values and T, . over 5t S Ay
from Hyperbolic
. 45 o
I‘egreSSIOH — Hgnont tem, aw™ -2 & o
o ATE
. = At Hy g temar™ 08
Crossover in H for AL not g i
of solar wind origin = P
|
3| et
Need a model for P il roe——> -
crossover in AL m
2 1 1 1
2 25 3.5
log, (A T)

Sharma and Veeramani, 2011
Setty, Ph. D. thesis.,, UMD 2014




Extreme events and
Ensemble forecasting

Data-driven models without
governing equations

Forecasts using Ensemble Transform
Kalman Filter (ETKF)

Forecast
ensemble

Ensemble spread as an indicator of
extreme events
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Data-driven Modeling and Prediction:
Intra-seasonal predictability

Phase space reconstruction o) Observation b) PSRM c) CFsv2
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Comparison of predictions of PSRM and CFSv2

Key results and conclusions:

Intraseasonal oscillations are
predictable

Predictability of intraseasonal
phenomena such as MJO and
midlatude processes

Data-driven modeling provides
higher predictability

Modeling and prediction of
spatio-temporal structure of
space weather

Need for networks of
monitoring stations

Amplitude

Amplitude
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Confluence of Extreme Events

Most extreme events are isolated
Extreme space weather can have
confluence with another event
Spread weather related disruption
during
2011 Japan Earthquake
Hurricane Sandy
Integrated effects study and analysis
needed
Low probability — high risk
Worst case scenario



Space Weather Workshops
at University of Maryland, College Park

Space Weather Impacts on Economic Vitality and
National Security,

October 2015 (NSF, NASA, NOAA)
Extreme Space Weather

July 2016 (NSF) Report (Eos, July 2017)*

Next meeting planned Spring 2018

Predictive Capability
Surja Sharma  for Extreme Space Weather Events

Workshop on Modeling and Prediction of Extreme Space Weather Events
S S h @ U m d . e d U College Park, Maryland, 22—24 August 2016



