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• Introduction to Hazards

• Long Term Forecasts (Climatology)

• Short Term Forecasts (Weather)

• Launch Considerations

• Recommendations
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Space Environment Hazards
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• Event Total Dose

– Caused by ~MeV electrons and multi-MeV protons

– Driven by flux intensity

– Requires hours to days of accumulation

• Single Event Effects

– Caused by multi-MeV protons and heavy ions

– Driven by flux intensity

– Instantaneous

• Internal Charging

– Caused by >0.1 MeV electrons

– Driven mainly by flux, affected by spectrum and materials

– Typically requires hours of accumulation, but large variation

• Surface Charging

– Caused by keV electrons

– Usually diagnosed with L, MLT or local temperature/spectrum

– Heavily influenced by material properties, which change on orbit!

– Shadow, timing and location are hugely critical

Hazard Climatology by Location
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Long Term Forecasts: Climatology

Nature of Forecast Statistics: mean, worst case Years to Decades

Use Satellite designers Assess and Mitigate Risk

Approach Empirical Sometimes captured in standards: military, NASA, 

ESA, ISO

Quantities Forecast • Total mission fluence of 

electrons, protons, heavy ions, 

at desired confidence level

• Worst minute proton and 

heavy ion flux, at desired 

confidence level

• Worst day electron flux, at 

desired confidence level

• Worst minute plasma 

conditions (reference worst 

case)

Derived quantities: 

• dose, 

• displacement damage, 

• single event effects rate/probability, 

• internal charging current or potential, 

• surface charging potential

Funding Split between civilian and 

national security

• National security funds AE9/AP9-IRENE 

(trapped radiation and plasma)

• NASA funds ESP-PSYCHIC (solar particles) 

and Badhwar-O’Neill (GCR)
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• Total radiation dose is a primary consideration 

for most satellite designs

• It is derived mainly from the mean environment

• It affects shielding and part choice

• Provided here by AE9/AP9 and ESP

Long Term Forecasts –HEO/Molniya Examples
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transient environment (e.g., worst day)

• It affects shielding and material choice, and 
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Short Term Forecasts: Weather

Nature of 

Forecast

Specific events Minutes to days

Use Satellite operators 

(rarely)

Launch (desired)

• Anomalies are rare

• Connection to elevated environments is weak

• All clear for risky operations is best use case, e.g., launch

Approach Mix of physics-based 

and empirical 

models

• Physics-based are global, but less accurate

• Empirical are local, but more accurate

• Data assimilation promises to provide best of both worlds

Quantities

Forecast

• Event onset

• Flux time series 

through some or 

all of Geospace

We need a good forensic tool

• Scientific focus on forecast has left us with crude tools to reconstruct what just 

happened during an anomaly

• Need a tool that seamlessly represents environment at vehicle from launch until now

• This enables development of statistical rules that could be used to exploit forecasts

Funding A complex mix • Fundamental research funded mostly by NASA, NSF

• Real-time and forecast models developed on NASA, NSF, and agency funding

• Situational awareness and forensic tools funded in house at NOAA, NASA, AFRL, 

Aerospace, etc

• (European approach draw from whole community’s expertise across all three)
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• This is an example of The Aerospace 

Corporation’s Spacecraft Environmental 

Anomalies Expert System 

• It addresses the four major space 

weather hazards to satellites

• Versions of it run at NOAA/SWPC, 

NASA/GSFC, and in defense systems

• Its scope is presently limited to specific 

orbits where near-real-time data are 

available

• It seamlessly integrates a very 

rudimentary forecast (persistence-on-

orbit) with the vehicle’s recent or entire 

history, depending on the 

implementation

Short Term Forecasts – SEAES Tool

1. Solar particles arrive first (SEE: Single Event Effects)

2. Solar particle dose accumulates (DOSE : Event Total Dose)

3. Geomagnetic storm occurs (SC: Surface Charging)

4. Trapped electrons increase (IC: Internal Charging)
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• In this example, an event at GEO is analyzed using the 

exact same algorithms and displays as the short term 

forecast tool

• The anomaly occurred at a time when none of the hazards 

was expected to be elevated, for a typical vehicle

• The preliminary conclusion is that this event was not

caused by space weather

Merging Forecast and 

Forensics

Event at GEO at ~270 E at 22-Apr-2017 ~14:30:00
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• Reconstructing the recent environment, much less the 

environment since launch, remains largely an ad hoc 

process, depending on orbit regime

• Such reconstructions are essential for forensics

• The example tool at left allows an analyst to set 

red/yellow thresholds based on a hazard indicator and 

a series of suspected environmental anomalies

• Other forensic tools would assist in day-of-anomaly 

analysis and in constructing hazard indicators and their 

relationships to anomaly probability

• Without these tools, forecasts are just curiosities

Forensics: A Big Missing Piece

FORENSICS + FORECAST = ACTION
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• Launch operations care primarily about a high confidence “All Clear”

• Launch Commit Criteria suffer from weak connection between space weather conditions and vehicle 

vulnerabilities

• It is unknown whether dependence on enterprise assets (ground comm, sat comm, sat nav) exposes the 

launch campaign to broader risks beyond the launch vehicle and its payload

• There are no tools to aid day-of-launch decisions

– Where/when/will the vehicle encounter hazardous conditions?

– Will those conditions exceed vehicle specifications?

• Ignorance of environment and its effects leads to invalid holds and scrubs

• These expensive mistakes are consequences of inadequate decision support tools and susceptibility 

analysis

• We are not experiencing the converse mistakes: there are no known launch anomalies caused by space 

weather

Launch – A Critical Case
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• To achieve societal benefit, engage users and build relationships

– Relationships must be deeper than alternating monologues at conferences and workshops

– Have joint workshops, e.g., between IEEE NPSS and AGU SPA

– We are seeing more of this, e.g., CCMC ILWS workshop, ASEC, SEESAW

• Be mindful of the difference between forecast as a demonstration of scientific prowess versus 

forecast as a user-support activity

– Scientific understanding favors physics-based simulations

– User-support often prefers empirical models (faster, more accurate)

• Align responsibilities and funding for short term forensics, short term forecast, and launch ops

– Too often we rely on “low hanging fruit” and “throwing a model over the fence.” This does not work

– The organizations that rely on short term forecasts are often unable to fund related research and R2O

– No one institution can do it all alone

– Open up funding to external collaboration

Recommendations


