Long term and short term forecasts of the radiation and plasma environment near Earth: Identifying needs and delivering value

> Paul O'Brien and Seth Claudepierre Space Sciences Department The Aerospace Corporation

> > **ISWI - 2017**

Outline

- Introduction to Hazards
- Long Term Forecasts (Climatology)
- Short Term Forecasts (Weather)
- Launch Considerations
- Recommendations

Space Environment Hazards

Hazard Climatology by Location

- Event Total Dose
 - Caused by ~MeV electrons and multi-MeV protons
 - Driven by flux intensity
 - Requires hours to days of accumulation
- Single Event Effects
 - Caused by multi-MeV protons and heavy ions
 - Driven by flux intensity
 - Instantaneous
- Internal Charging
 - Caused by >0.1 MeV electrons
 - Driven mainly by flux, affected by spectrum and materials
 - Typically requires hours of accumulation, but large variation
- Surface Charging
 - Caused by keV electrons
 - Usually diagnosed with L, MLT or local temperature/spectrum
 - Heavily influenced by material properties, which change on orbit!
 - Shadow, timing and location are hugely critical

Long Term Forecasts: Climatology

Nature of Forecast	Statistics: mean, worst case	Years to Decades	
Use	Satellite designers	Assess and Mitigate Risk	
Approach	Empirical	Sometimes captured in standards: military, NASA, ESA, ISO	
Quantities Forecast	 Total mission fluence of electrons, protons, heavy ions, at desired confidence level Worst minute proton and heavy ion flux, at desired confidence level Worst day electron flux, at desired confidence level Worst minute plasma conditions (reference worst case) 	 Derived quantities: dose, displacement damage, single event effects rate/probability, internal charging current or potential, surface charging potential 	
Funding	Split between civilian and national security	 National security funds AE9/AP9-IRENE (trapped radiation and plasma) NASA funds ESP-PSYCHIC (solar particles) and Badhwar-O'Neill (GCR) 	

Long Term Forecasts – HEO/Molniya Examples

10 Year Dose Behind Spherical Aluminum Shielding for HEO Orbit

10 Year Worst-Case 24-Hour Internal Charging Current Behind Spherical Aluminum Shielding for HEO Orbit

- Total radiation dose is a primary consideration for most satellite designs
- It is derived mainly from the mean environment
- It affects shielding and part choice
- Provided here by AE9/AP9 and ESP

- Internal charging current is derived from the transient environment (e.g., worst day)
- It affects shielding and material choice, and electrical system design
- Provided here by AE9

6

Short Term Forecasts: Weather

Nature of Forecast	Specific events	Minutes to days
Use	Satellite operators (rarely) Launch (desired)	 Anomalies are rare Connection to elevated environments is weak All clear for risky operations is best use case, e.g., launch
Approach	Mix of physics-based and empirical models	 Physics-based are global, but less accurate Empirical are local, but more accurate Data assimilation promises to provide best of both worlds
Quantities Forecast	 Event onset Flux time series through some or all of Geospace 	 We need a good forensic tool Scientific focus on forecast has left us with crude tools to reconstruct what just happened during an anomaly Need a tool that seamlessly represents environment at vehicle from launch until now This enables development of statistical rules that could be used to exploit forecasts
Funding	A complex mix	 Fundamental research funded mostly by NASA, NSF Real-time and forecast models developed on NASA, NSF, and agency funding Situational awareness and forensic tools funded in house at NOAA, NASA, AFRL, Aerospace, etc (European approach draw from whole community's expertise across all three)

Short Term Forecasts – SEAES Tool

- This is an example of The Aerospace Corporation's Spacecraft Environmental Anomalies Expert System
- It addresses the four major space weather hazards to satellites
- Versions of it run at NOAA/SWPC, NASA/GSFC, and in defense systems
- Its scope is presently limited to specific orbits where near-real-time data are available
- It seamlessly integrates a very rudimentary forecast (persistence-onorbit) with the vehicle's recent or entire history, depending on the implementation

- 2. Solar particle dose accumulates (DOSE : Event Total Dose)
- 3. Geomagnetic storm occurs (SC: Surface Charging)
- 4. Trapped electrons increase (IC: Internal Charging)

Merging Forecast and Forensics

- In this example, an event at GEO is analyzed using the exact same algorithms and displays as the short term forecast tool
- The anomaly occurred at a time when none of the hazards was expected to be elevated, for a typical vehicle
- The preliminary conclusion is that this event was *not* caused by space weather

Forensics: A Big Missing Piece

- Reconstructing the recent environment, much less the environment since launch, remains largely an ad hoc process, depending on orbit regime
- Such reconstructions are essential for forensics
- The example tool at left allows an analyst to set red/yellow thresholds based on a hazard indicator and a series of suspected environmental anomalies
- Other forensic tools would assist in day-of-anomaly analysis and in constructing hazard indicators and their relationships to anomaly probability
- Without these tools, forecasts are just curiosities

Launch – A Critical Case

- Launch operations care primarily about a high confidence "All Clear"
- Launch Commit Criteria suffer from weak connection between space weather conditions and vehicle vulnerabilities
- It is unknown whether dependence on enterprise assets (ground comm, sat comm, sat nav) exposes the launch campaign to broader risks beyond the launch vehicle and its payload
- There are no tools to aid day-of-launch decisions
 - Where/when/will the vehicle encounter hazardous conditions?
 - Will those conditions exceed vehicle specifications?
- Ignorance of environment and its effects leads to invalid holds and scrubs
- These expensive mistakes are consequences of inadequate decision support tools and susceptibility analysis
- We are not experiencing the converse mistakes: there are no known launch anomalies caused by space weather

Recommendations

- To achieve societal benefit, engage users and build relationships
 - Relationships must be deeper than alternating monologues at conferences and workshops
 - Have joint workshops, e.g., between IEEE NPSS and AGU SPA
 - We are seeing more of this, e.g., CCMC ILWS workshop, ASEC, SEESAW
- Be mindful of the difference between forecast as a demonstration of scientific prowess versus forecast as a user-support activity
 - Scientific understanding favors physics-based simulations
 - User-support often prefers empirical models (faster, more accurate)
- Align responsibilities and funding for short term forensics, short term forecast, and launch ops
 - Too often we rely on "low hanging fruit" and "throwing a model over the fence." This does not work
 - The organizations that rely on short term forecasts are often unable to fund related research and R2O
 - No one institution can do it all alone
 - Open up funding to external collaboration