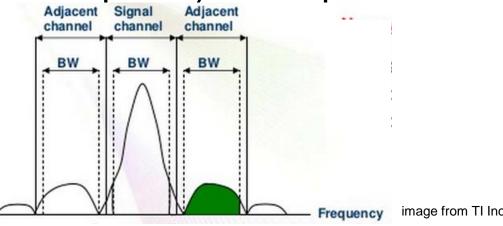
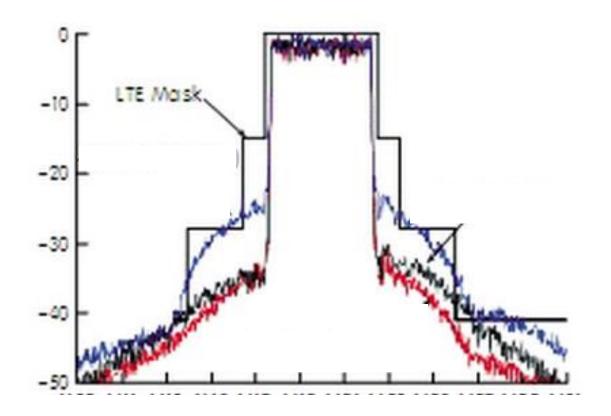


International Committee on Global Navigation Satellite Systems

What is spectrum management


Why manage spectrum?

- Recall: if GNSS signals share frequencies with high power terrestrial systems, eg mobile phones, GNSS reception would not be possible
- To avoid interference, the Radio Regulations separate different service types (eg terrestrial mobile, satcoms, TV) into different frequency bands or "allocations", eg,
 - mobile at 900MHz
 - TV at 600MHz
 - satcoms at 1650MHz
 - GNSS at 1575MHz


How do you avoid interference?

- By separating systems that expect to receive very different signal levels, interference can be minimised
- typically satellite systems are kept well separated from terrestrial systems
 - however, systems using highly directional antennas sometimes share frequencies, eg point to point links
- radio frequency filters are used in transmitters and receivers to avoid frequency overlap

Adjacent frequency systems

 The problem is, frequency filters are not perfect, there is some overspill, both for transmitters and receivers

International Committee on Global Navigation Satellite System

Terrestrial transmitter next to a GNSS receiver

- Imagine a GNSS receiver operating a short distance from a base station or mobile phone
- the terrestrial signal levels could be many billion times larger than the GNSS signals
- if the frequency separation is insufficient, there is a real risk that overspill tails from the terrestrial system will swamp the GNSS receiver
- the ITU spends many years working out the appropriate frequency separations to reduce interference
- and, to prevent interference between systems, national regulators apply ITU recommendations

Radio Regulation Allocations

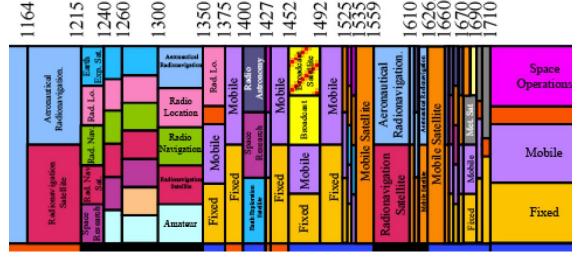
• The result of decades of compatibility studies

Allocation to services		
Region 1	Region 2	Region 3
1 525-1 530 SPACE OPERATION (space-to-Earth) FIXED MOBILE-SATELLITE (space-to-Earth) 5.208B 5.351A Earth exploration-satellite Mobile except aeronautical mobile 5.349 5.341 5.342 5.350 5.351	1 525-1 530 SPACE OPERATION (space-to-Earth) MOBILE-SATELLITE (space-to-Earth) 5.208B 5.351A Earth exploration-satellite Fixed Mobile 5.343	1 525-1 530 SPACE OPERATION (space-to-Earth) FIXED MOBILE-SATELLITE (space-to-Earth) 5.208B 5.351A Earth exploration-satellite Mobile 5.349
5.352A 5.354 1 530-1 535 SPACE OPERATION (space-to-Earth) MOBILE-SATELLITE (space-to-Earth) 5.208B 5.351A 5.353A Earth exploration-satellite Fixed Mobile except aeronautical mobile 5.341 5.342 5.351 5.354	5.341 5.351 5.352A 5.354 1 530-1 535 SPACE OPERATION (space-to-Earth) MOBILE-SATELLITE (space-to-Earth) 5.341 5.351A 5.353A Earth exploration-satellite Fixed Mobile 5.343	
1 535-1 559	MOBILE-SATELLITE (space-to-Earth) 5.208B 5.351A 5.341 5.351 5.353A 5.354 5.355 5.356 5.357 5.357A 5.359 5.362A	
1 559-1 610	AERONAUTICAL RADIONAVIGATION RADIONAVIGATION-SATELLITE (space-to-Earth) (space-to-space) 5.208B 5.328B 5.329A 5.341	

services are either:

- PRIMARY

or


- secondary

(must not cause interference to primary)

GIobal Navigation Satellite System

Typical National Allocations

- National implementations usually align with, or mirror, the Radio Regulations
- Aligning with the RR helps minimise interference between neighbouring countries and services
- Also allows countries to benefit from harmonised spectrum use, lower equipment costs, etc
- Chart below shows UK allocations around the GNSS L-bands
 THE BERGER STREET

Minimise interference, maximise benefits

- The Radio Regulations are the results of many decades of compatibility studies
- Experts at the ITU consider the specific characteristics and operational aspects of systems
- the experts evaluate whether systems can either share the same frequencies or use frequencies adjacent to each other
 - these are the **radio compatibility studies**
- the experts also define recommendations to facilitate harmonious use of the spectrum
- The Radio Regulations generally work!

