Updating Fiji's maritime boundary

Supervisor: Professor Don Grant and Simon Fuller Name:Vasiti Soko Vasiti.soko@gmail.com

Gai

Naviti

Va

Why? Current Issues with FMG 1986

Why? More example on issues with FMG 1986

Legend CCMS RoadCentreline 0 0.02 0.04 0.08 Kilometers

Water_Meters_Fiji
FIJI.csv Events
CCMS
RoadCentreline

0 0.01 0.02 0.04 Kilometers

Current situation with CAAF

Map 2

Visual Reporting Point (VRP) are user's waypoint marked on aeronautical charts. Clearly the shift is substantial. This shift is well outside the tolerances for air navigation. Such data proves the why CAAF cannot use FGD 1986 data in their system.

Length/distance/dimension	Publication resolution	Integrity classification
Airway segment length	1/10 km or 1/10 NM	routine
Distance used for the formation of an en-route fix	1/10 km or 1/10 NM	routine
Terminal arrival/departure route segment length	1/100 km or 1/100 NM	essential
Distance used for the formation of a terminal and instrument approach procedure fix	1/100 km or 1/100 NM	essential
Runway and FATO length, TLOF dimensions	1 m or 1 ft	critical
Runway width	1 m or 1 ft	essential
Displaced threshold distance	1 m or 1 ft	routine
Clearway length and width	1 m or 1 ft	essential
Stopway length and width	1 m or 1 ft	critical
Landing distance available	1 m or 1 ft	critical
Take-off run available	1 m or 1 ft	critical
Take-off distance available	1 m or 1 ft	critical
Accelerate-stop distance available	1 m or 1 ft	critical
Runway shoulder width	1 m or 1 ft	essential
Taxiway width	1 m or 1 ft	essential
Taxiway shoulder width	1 m or 1 ft	essential

Figure 6. ICAO -Length, distance and dimension Fiji's CAAF requirement

STANDARDS FOLLOWED BY OTHER COUNTRY Survey Tolerance: Land management

Map Scale	Application	0.2mm plot accuracy	minimum survey
		on the ground	tolerance
1:1,000,000	International maps	200m	~70m
1:250,000	Aeronautical charts	50m	~20m
1:100,000	small scale	20m	~5m
	topographical maps		
1:50,000	cadastral index maps	10m	~3m
1:10,000	town maps	2m	~0.5m
1: 2,500	urban service maps	0.5m	~0.1m
1:1,000	urban cadastral maps	0.2m	~0.05m
1: 500	construction site plans	0.1m	~0.1m

Mapping plot accuracy and survey tolerance Stanaway, F (2004)

To more fun stuff

Methodology

+

1

Esri, HERE, G

Va

Cis

ITRF solutions

ITRF2014 is the latest realization of the International Terrestrial Reference System. It uses as input data time series of station positions and Earth Orientation Parameters (EOPs) provided by the Technique Centres of the four space geodetic techniques (VLBI, SLR, GNSS and DORIS) (http://itrf.ign.fr/ITRF_solutions/2014).

Transformation p	arameters	from ITF	RF2014 to	past ITRF	5.			
SOLUTION UNITS>	Tx mm	Ту mm	Tz mm	D ppb	Rx .001"	Ry .001"	Rz .001"	EPOCH
RATES UNITS>	T× mm/y	Ту mm/у	Tz mm/y	D ppb/y	Rx .001"/y	Ry .001"/y	Rz .001"/y	
ITRF2008	1.6	1.9	2.4	-0.02	0.00	0.00	0.00	2010.0
ITRF2005 rates	2.6 0.3	1.0 0.0	-2.3 -0.1	0.92 0.03	0.00 0.00	0.00 0.00	0.00 0.00	2010.0

Updating Fiji maritime boundary ITRF 2005 – ITRF 2015

	ITRF 2005									
Stations	X	У	z	dYears-08	dYears-2014	diffDate		xNew	yNew	zNew
CIKI	-6090792.049	-128369.460	-1882863.375	22/07/08	1/01/10	-1.447		-6090792	-128369.46	-1882863
EKUBU	-6045006.477	248381.185	-2012567.046	22/07/08	1/01/10	-1.447		-6045006	248381.183	-2012567
КАМА	-6128129.150	-891.801	-1763104.872	22/07/08	1/01/10	-1.447		-6128129	-891.8021	-1763105
KIAS	-6125127.814	96598.283	-1770426.001	22/07/08	1/01/10	-1.447		-6125128	96598.2815	-1770426
LAUT	-6075194.581	270923.908	-1917189.421	22/07/08	1/01/10	-1.447		-6075195	270923.907	-1917189
MANE	-6071340.246	307355.462	-1923860.422	22/07/08	1/01/10	-1.447		-6071340	307355.46	-1923860
NAKO	-6069393.370	74300.738	-1952865.790	22/07/08	1/01/10	-1.447		-6069393	74300.7369	-1952866
NASA	-6092446.183	69059.233	-1880371.303	22/07/08	1/01/10	-1.447		-6092446	69059.2318	-1880371
OVAL	-6078392.577	126360.602	-1923939.748	22/07/08	1/01/		trfoncai	$a_{\rm p}$ fr $\frac{193}{193}$	126360.6	-1923940
QELE	-6129224.759	-89303.143	-1756463.885	22/07/08	1/01/ [·]		th.ensg.i	gn.n <u>-00</u> -0725	-89303 143	-1756464
QILO	-6141289.697	-4173.006	-1717003.079	22/07/08	1/01/10	-1.447		6120220	4172 007	1717002
SESE	-6106871.908	158732.363	-1828960.537	22/07/08	1/01/10				-4110.001	
SAIL	-6108966.715	182311.733	-1818366.920	22/07/08	1/01/10	-	2005 RATI		158732.361	- 1828361
SOLE	-6219743.211	324285.635	-1371182.671	22/07/08	1/01/10		2.0	<u>-6108367</u>	182311.732	-1818367
SUVA	-6060677.228	166617.195	-1973761.328	22/07/08	1/01/10		-2.3	-1-6219743	324285.633	-1371183
TAVE	-6101703.045	8527.734	-1852331.734	22/07/08	1/01/10	-	0.92 0	03 6060677	166617,194	-1973761
ULUI	-6119100.790	62728.212	-1792699.464	22/07/08	1/01/10	-	0	06101703	8527.73319	-1852332
UNAV	-6060202.220	-129071.485	-1978127.158	22/07/08	1/01/10		0	-6119101	62728.2105	-1792699
VADA	-6078942.227	247703.323	-1908644.924	22/07/08	1/01/10	<u> </u>		-4-6060202	-129071.49	-1978127
YAWI	-6105774.604	260113.907	-1819818.890	22/07/08	1/01/10	-1.447		-6078942	247703.322	-1908645
·								-6105775	260113.905	-1819819

Helmert Transformation parameters

4.2.4 7 Helmert Transformation Parameters

The below descriptions are adopted from Geographic Information Systems Stack Exchange (2015) where the formula used was also extracted from to calculate the seven helmert parameters.

The script included three kinds of transformation:

- 1. Translation displayed by vector of displacement in meters
- 2. Scale factor given in parts per million (ppm)
- Rotation where x'=x rz*y +ry*z,
 - y'=y fx *z + fz *x,z' = z - fy *x + fx *y

Geodetic coordinates (x, y, z) and (x', y', z') is a linear function related to the parameters [cx, cy, cz, +s, (1+s)*rx, (1+s)*ry, (1+s)*rz] = [b1, b2, b3..., b7), where b are the helmert transformation estimates that is also using the standard ordinary least square algorithm. Therefore converting the x, y, z to x', y'z' into three separate rows of data for the seven independent variables as per below table

1, 0, 0, x.0_vZ_v-y;x' 0, 0, 1, z, -x, 0; y' 0, 0, 1, z, -x, 0; z'

x- geodetic Cartesian coordinates

C - displacement in meters

S - scale in ppm

r- rotation in arcseconds.

```
helmert.fit <- function(x, xp) {</pre>
 x.d <- data.frame(matrix(apply(x, 2,</pre>
                                   function(y) matrix(c(1,0,0,y[1],0,y[3],-y[2],
                                                         0,1,0,y[2],-y[3],0,y[1],
                                                         0,0,1,y[3],y[2],-y[1],0),
                                                       nrow=3)), ncol=7, byrow=TRUE))
  x.d
 x.d$y <- as.vector(xp)</pre>
 names(x.d) <- c("cx", "cy", "cz", "s", "rx", "ry", "rz", "y")
 rownames(x.d) <- outer(c("x","y","z"), 1:ncol(x), paste, sep="") # `ncol(x)` was</pre>
 fit <- lm(y \sim . - 1, data=x.d)
  # Convert the solution back to (cx, cy, cz, s, rx, ry, rz) in standard
  # units of measurement (ppm for `s` and arcseconds for `rx`, `ry`, `rz`).
  parameters <- coef(fit) * c(1,1,1,1,60*60*180/pi*c(1,1,1))</pre>
  s1 <- parameters["s"]</pre>
  narameters <- narameters / c(1 1 1 1 s1 s1 s1)
```

Outcome of the transformation

	John and Hu: FGD (WGS 72) - ITRF2005						
tx	ty	tz	X	ty	tz	s	
-7.0295	-22.1185	-10.1505	0.1139	-0.3325	0.2573	-1.4227	
	FGD 86(WGS 72) - ITRF2014						
-5.437	-23.33	-10.18	-0.151	0.3485	-0.314	-1.191	
Difference							
-1.5927	1.2083	0.0307	0.2653	-0.681	0.5716	-0.2315	

Residuals from between ITRF 2005 and ITRF 2014

Residuals between the two sets of coordinates that is FGD86 (WGS72) -ITRF2005 and FGD86 (WGS 72)-ITRF2014 were calculated to identify the difference.

Difference is minimal when moving from one ITRF to another. For Fiji GIS Users, moving datasets from a dynamic reference frame to another would have minimal impact on GIS datasets and accuracy as opposed to moving from a static datum to a dynamic datum.

	Residuals (mm)					
СІКІ	0.005	0.013	-0.017			
EKUB	0.007	0.012	-0.018			
КАМА	0.005	0.014	-0.017			
KIAS	0.005	0.014	-0.018			
LAUT	0.008	0.006	-0.016			
MANF	0.007	0.013	-0.019			
NAKO	0.006	0.013	-0.018			
NASA	0.006	0.013	-0.018			
OVAL	0.006	0.013	-0.018			
QELE	0.005	0.014	-0.017			
QILO	0.005	0.014	-0.018			
SESE						
SAIL						
SOLE	0.002	-0.033	-0.016			
SUVA	0.006	0.013	-0.018			
TAVE	0.005	0.013	-0.017			
ULUI	0.005	0.014	-0.018			
UNAV	0.005	0.007	-0.021			
VADA	0.006	0.013	-0.018			
YAWI	0.006	0.013	-0.019			

Fiji Maritime Boundary Distortion Map in QGIS

Vanua Levu

Gau

Nacula

Difference in the 2 datum not fully understood by local GIS users

Viti Levu

Many organizations spend substantial amounts acquiring a data set without giving any thought to how it will be maintained.

Ovalau

Vatulele

Va

References

- During the General Assembly in 2015, Fiji through the office of the Permanent Representative to the United Nation with the support of member states, table a resolution on Geodetic Reference Frame for Sustainable Development. This Resolution was adopted by the General Assembly on February 2015
- Takala, A. (2016). DEVELOPMENT ON MODERNISATION OF FIJI'S GEODETIC DATUM.
- Panayotov, A., Georgiev, I. and Georgiev, I. (2018). (PDF) A practical approach for airport spatial modeling. [online] ResearchGate. Available at: https://www.researchgate.net/publication/266652970_A_practical_approach_for_airport_spatial_modeling [Accessed 20 Sep. 2018].
- Icao.int. (2018). [online] Available at: http://www.icao.int/NACC/Documents/Meetings/2014/ECARAIM/REF06-Doc9881.pdf [Accessed 20 Sep. 2018].
- (PDF) A practical approach for airport spatial modeling. Available from: <u>https://www.researchgate.net/publication/266652970_A_practical_approach_for_airport_spatial_modeling</u> [accessed Sep 20 2018].
- Bishop, I., Escobar, F., Karuppannan, S., Suwarnarat, K., Williamson, I., Yates, P. and Yaqub, H. (2000). Spatial data infrastructures for cities in developing countries. Cities, 17(2), pp.85-96.
- Loshin, D. (2011). The practitioner's guide to data quality improvement. Burlington, MA: Morgan Kaufmann.
- <u>http://itrf.ign.fr/trans_para.php</u>
- Choy, S., Kuckartz, J., Dempster, A., Rizos, C. and Higgins, M. (2016). GNSS satellite-based augmentation systems for Australia. GPS Solutions, 21(3), pp.835-848.

Choy, S., Kuckartz, J., Dempster, A.G. et al. GPS Solut (2017) 21: 835. <u>https://doi.org/10.1007/s10291-016-0569-2</u>

Acknowledgements

- My Supervisors: Professor Don Grant and Simon Fuller
- Geoscience Australia John Dawson and Nick Brown
- Office of the Surveyor General Fiji
- Fiji Geospatial Users
- Fiji Airports Authority
- Sugarcane Industry

Vinaka Vakalevu & Thank you

Vanua Levu

Koro

Gau

Ovalau Motoriki

Viti Levu

Vatulele

Naviti

+

1

Moata

Esri, HERE, Ga

Va

0

On