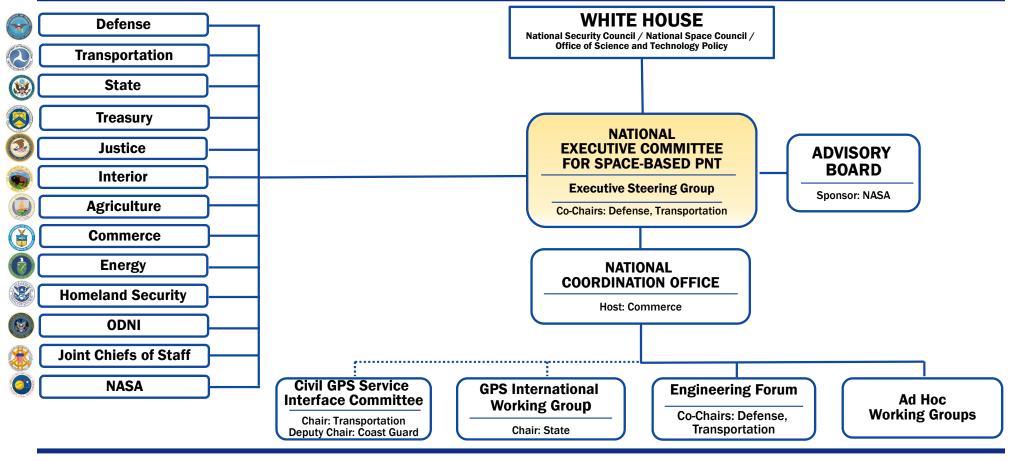
Department of the Air Force

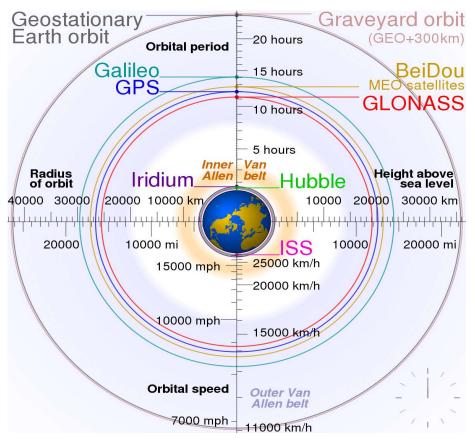
GPS Program Update

Dr. Christopher Erickson
Office of the Assistant
Secretary of the Air Force
Space Acquisition and Integration
5 December 2022

Position, Navigation, and Timing Policy

"Maintain United States leadership in the service provision, and responsible use of global navigation satellite systems, including GPS and foreign systems."





National Space-based PNT Governance

Brief Overview and History

- Timation & Transit
- Secor
- AF 621B
- · GPS I
- KAL Flight 007
- GPS Block II/IIA
- End of Selective Availability

GPS Constellation Status

37 Satellites • 31 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age (yrs)	Oldest
GPS IIR	12 (5*)	20.7	25.1
GPS IIR-M	8 (1*)	14.9	16.9
GPS IIF	12	8.6	12.3
GPS III	5 [2.4	3.7

*Not set healthy

As of 27 Aug 22

GPS Signal in Space (SIS) Performance

Week ending on 3 Sept 22

Average URE*	Best Day URE	Worst Day URE	
49.1 cm	31.5 cm (20 Apr 21)	64.8 cm (20 May 22)	

*All User Range Errors (UREs) are Root Mean Square values

GPS Modernization

SPACE SEGMENT (SATELLITES)

Legacy (GPS IIA/IIR)

- Basic GPS
- NUDET (Nuclear Detonation)
 Detection System (NDS)

GPS IIR-M

- 2nd Civil Signal (L2C)
- New Military Signal
- Increased Anti-Jam Power

GPS IIF

- 3rd Civil Signal (L5)
- Longer Life
- Better Clocks

GPS III (SV01-10)

- Accuracy & Power
- Increased Anti-Jam Power
- Inherent Signal Integrity
- 4th Civil Signal (L1C)
- Longer Life
- Improved Clocks

GPS IIIF (SV11-32)

- Unified S-Band Telemetry, Tracking, & Commanding
- · Search & Rescue (SAR) Payload
- Laser Retroreflector Array
- Redesigned NDS Payload
- Regional Military Protect (RMP)

CONTROL SEGMENT (GROUND)

Legacy (OCS)

- Mainframe System
- Command & Control
- Signal Monitoring

Architecture Evolution Plan (AEP)

- Distributed Architecture
- Increased Signal Monitoring Coverage
- Security & Accuracy
- · Launch And Disposal Operations

OCX Block 0

- GPS III Launch & Checkout
- **GPS III Contingency Ops (COps)**
- · GPS III Mission on AEP

M-Code Early Use (MCEU)

 Update OCS to operationalize Core M-Code on AEP

OCX Block 1

- Fly Constellation & GPS III
- Control New Signals
- Upgrade Cyber Security

OCX Block 2

- · Control all signals
- Capability On-Ramps
- GPS III Evolution

OCX Block 3F

- Incorporates GPS IIIF Command & Control
- Integrates new capabilities

USER SEGMENT (RECEIVERS)

Continued Support to growing number of applications

Visit GPS.gov for more info

Modernized Civil Signals

- L2C, Commercial applications
- · L5, Safety of life, band protected
- L1C, Multi-GNSS interoperability

Improved Civil Signals

Three New Navigation Signals Designed for Civilian Use:

■ Civilain L2 (L2C)

■ Safety of Life (L5)

■ New Civilian L1 (L1C)

GPS Enables Infrastructure

MUNICIPAL SERVICES

bage trucks, snowplows, and buses, leading to substantial savings in dollars, fuel, and time.

40%

700+

TRANSPORTATION

GPS is at the heart of the FAA's Next Generation Air Transportation System. GPS enabled optimized flight paths can reduce:

Autonomy

Public Safety

AGRICULTURE

By 2030, GPS-enabled precision agriculture can save 180 billion cubic meters of water.

Fuel use by 16 million gallons

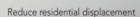
Herbicide use by 2 million quarts

Insecticide use by 4 million pounds

CONSTRUCTION

High-precision GPS is used to support the building of roads, bridges, and other infrastructure projects.

Projects utilizing GPS can:



Reduce wetland impacts

Reduce impact to sensitive species

Reduce landslide risks

Minimize impact on existing utilities

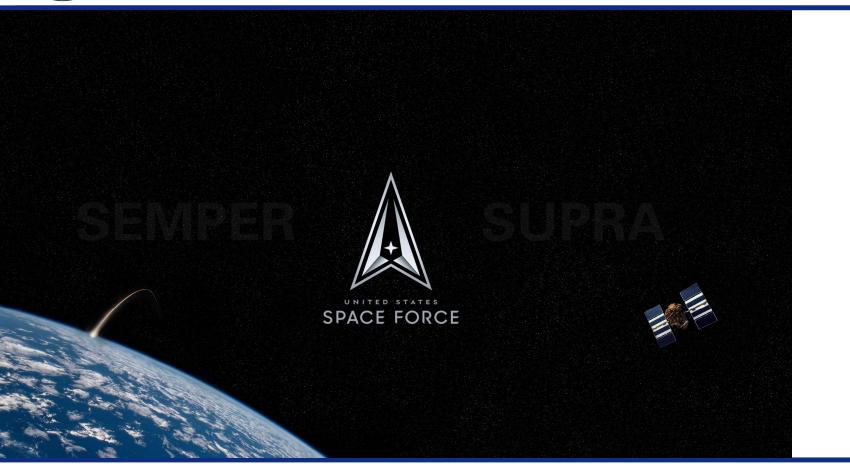
Finance

Global Perspective

Global Constellations

- GPS (24+3)
- GLONASS (24+)
- **GALILEO (24+3)**
- BDS/BEIDOU (27+3 IGSO + 5 GEO)
- Regional Constellations
 - QZSS (4+3)
 - IRNSS/NAVIC (7)
 - Korea KPS (7)
- Plus Satellite-based Augmentation Systems

16th International Committee on GNSS


- Held in hybrid format with both in-person and virtual participation
 - More than 200 people participated
 - All 6 GNSS Providers, as well as other members and observers
- Agenda included:
 - Meeting of the Providers' Forum
 - System Provider Updates
 - Applications and Experts Session
 - Meeting of all four Working Groups

Thank You!

