

Current and Future Spatial-Temporal Variability of Flood susceptibility in Rwanda

Introduction

1

Website: www. space.gov.rw | Twitter: @spaceRwanda

Background

Kinamba-Gakiriro-Kagugu (27 January 2022)

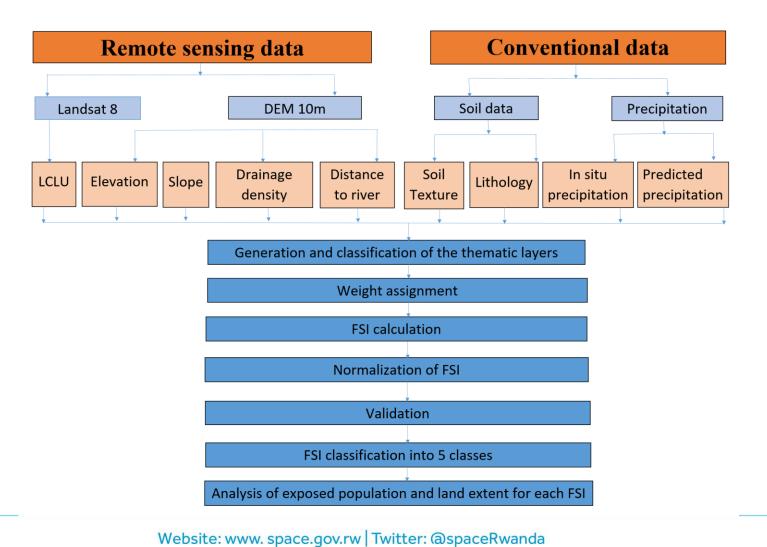
- Floods are one of the most frequent and distressing natural hazards threatening life and economy loss worldwide.
- The Emergency Events Database (EM-DAT) reported 290 major natural disasters worldwide in 2019, of which 49% were caused by floods.
- In terms of mortalities, floods killed the largest amount of people, at more than five thousand, followed by extreme temperature.

(https://www.preventionweb.net/files/73363_2019globalnaturaldisasterass essment.pdf).

The Ministry in charge of Emergency Management of Rwanda has ranked floods as the second disaster in Rwanda, which have killed many people in 2021 after landslides, and they are the first disaster which damage the crops at the high extent area.

- In Rwanda, researchers have conducted studies about geo-environmental disaster management with significant emphasis on the description of hazards but scarce attention has been paid to flood susceptibility prediction under the tremendous global warming (climate change). Therefore the objectives of this study are:
- To assess the monthly flood susceptibility index in Rwanda based on the baseline period (1981 2017).
- To evaluate the spatial and temporal variability of the future flood susceptibility based on General Circulation Models (GCMs) of Coupled Model Intercomparison Project Phase 5 (CMIP 5) under the Representative Concentration Path (RCP) 2.6 (optimistic) and 8.5 (pessimistic) scenarios
- To guide and inform decision and policy makers in the relocation process, land use planning and sustainable environmental management toward flood resilience building in Rwanda.

Materials and Methods



Study area Hilly and mountainous Altitude: 919-4501m Area: 26338 Km² Population: 13,527,079 Density:525 per Km² Lakes: 128,190 ha Rivers: 7,260 ha Marshlands: 77.000 22,300: springs SDS LRS LDS SRS Average precipitation Average temperature Rainy(mm) Dry(mm) Rainy Dry Dec-Feb Mar-May Jun-Sept Sept-Nov 110-200 14-26 (°C) 19-27 (°C) 10-20 District boundaries 29'00'E 30.0.0.E 31"0"0"E **SDS**: Short dry season LDS: Long dry season SRS: Short rainy season LRS: Long rainy season

Flowchart for the identification of Flood Susceptibility Index (FSI)

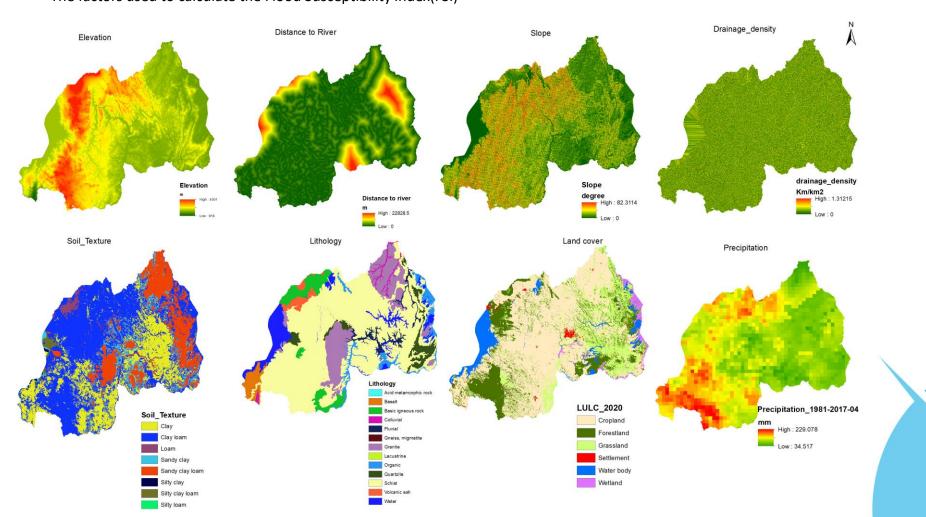
Assigned weight and rank scores for the layer

actor (unit)	Class	Flood hazard	Class Rank	Factor weigh(%)		Factor (unit)	Factor (unit) Class	Factor (unit) Class Flood hazard	Factor (unit) Class Flood hazard Class Rank
	< 55	Very low	1						
	55_70	Low	2	19.57%		Drainage	Drainage <0.1	Drainage <0.1 Very low	Drainage <0.1 Very low 1
Precipitation	70 - 85	Moderate	3		density(km/km2)	density(km/km2) <0.4			
	85- 100 >100	High Very high	4 5				<0.7	<0.7 Moderate	<0.7 Moderate 3
(mm/month)	>100 >140	Very low	1	16.06%		<1	5		
	<140	Low	2	10.00%			>1	, ,	
Distance to river(m)	<140 <105	Moderate	3			Soil Texture	Soil Texture Loam Clay loam		
	<70	High	4				Sandy clay loam,		
	<35	Very high	5				Sandy clay		
Elevation(m)	>4400	Very low	1	14.20%			Silty loam, Silty clay		
	<2500	Low	2				loam, Silty clay		
	<1500	Moderate	3				Clay	Clay	Clay
	<500	High	4						
	<50	Very high	5						
	>40	Very low	1	13.99%			Schist		
	<40	Low	2				Organic	Organic Moderate	Organic Moderate 3
	<30	Moderate	3				Acid metamorphic	Acid matamorphic	Acid motomorphic
	<20 <10	High Very high	4 5				rock, Migmatite		
		Very low	1	11.07%			Quartzite, Gneiss.		
use		-	2	11.0770					
	pland	Moderate	3				Granite, Basic igneous	Granite, Basic igneous	Granite, Basic igneous
	Wetland	High	4				rock, water		
	Settlement	Very high	5				Basalt, Colluvial,	Basalt, Colluvial, Very high	Basalt, Colluvial, Very high 5
	Water body						Fluvial, Lacustrine	Fluvial, Lacustrine	Fluvial, Lacustrine

Cont's

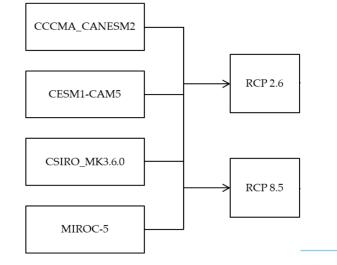
Satellite images and formulas used in this study

- FSI = ("Precipitation" * 19.57%) + ("Soil_texture" * 8.89%) + ("Lithology" * 5.65%) + ("LCLU" * 11.07%) + ("Elevation" * 14.2%) + ("Dist_to_river" * 16.06%) + ("Slope" * 13.99%) + ("Drainage_density" * 10.57%)
 - FSI Normalization ranged from 0 to $1 = (FSI FSI_{min}) / (FSI_{max} FSI_{min})$


- Normalized Difference Water Index(NDWI) using Sentinel-2 = (B03-B08/B03+B08)
- Sentinel-1: To extract waterbodies in observed area
- Landsat 8 for Land Cover classification

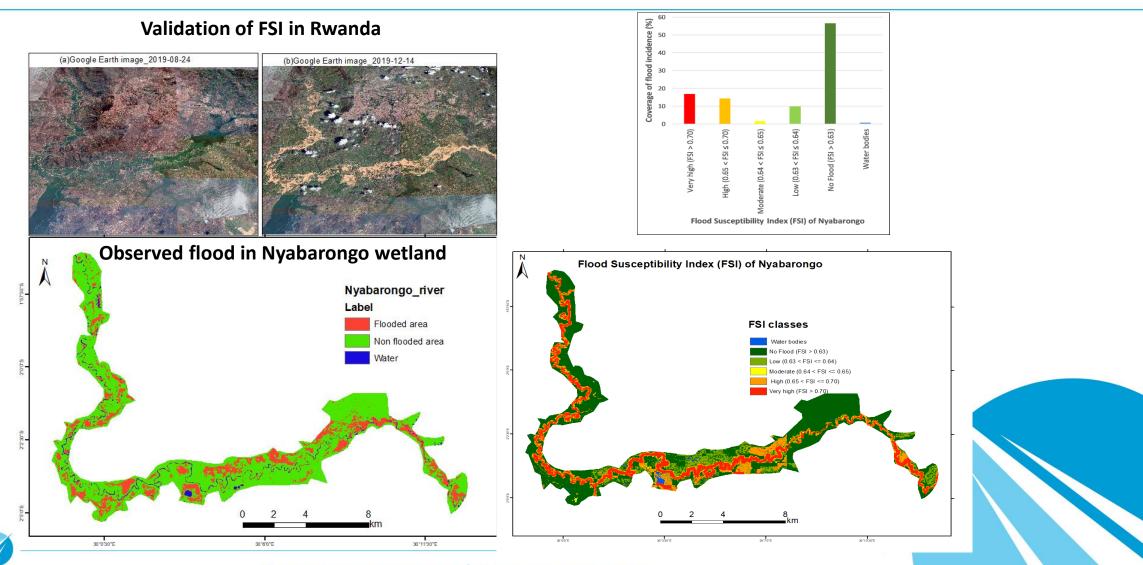
Cont's

The factors used to calculate the Flood Susceptibility Index(FSI)



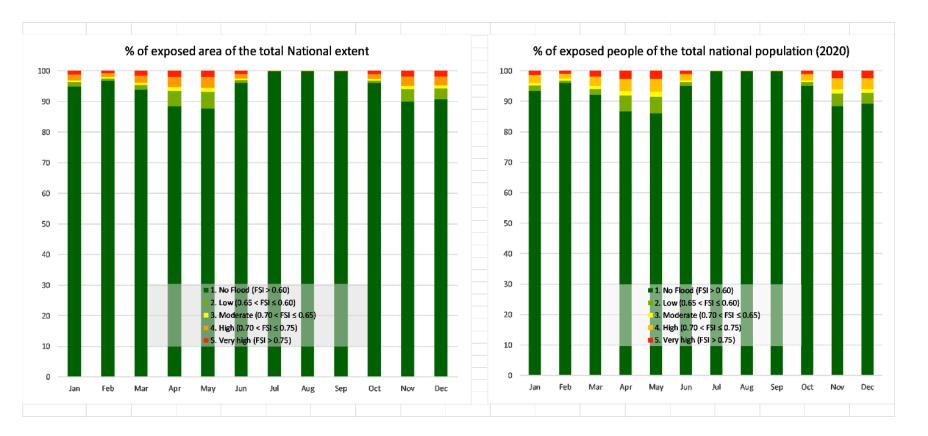
The details of the four GCMs applied in this study

Model	Country	Institute	Resolution
CCCMA_CANESM2	CANADA	Canadian Centre for Climate Modeling and Analysis	2.8° × 2.8°
CESM1-CAM5	USA	Community Earth System Model Contributors	1.25° × 0.9°
CSIRO_MK3.6.0	AUSTRALIA	Commonwealth Scientific and Industrial Research Organization	1.875° × 1.875°
MIROC-5	JAPAN	Model for Interdisciplinary Research On Climate	1.4° × 1.4°


Integrated of climate change scenarios

We used the average of CCCMA_CANESM2, CESM1-CAM5, CSIRO_MK3.6.0 and MIROC-5 CMPI5 GCMs because **Ongoma** and **George** noted that are among the top eight models that well simulate rainfall patterns for the East African region.

Cont'


FSI 1981-2017: January FSI RCP 8.5, 2030s: January FSI RCP 2.6, 2030s: January District boundaries 140 km High $(0.65 < FSI \le 0.70)$ Moderate (0.64 < FSI ≤ 0.65) Low (0.63 < FSI ≤ 0.64) No flood (FSI < 0.63) Water bodies

Comparison of current and future predicted Flood Susceptibility Index (FSI) in Rwanda

Cont's

The extent of exposed area and population to flood(current)

- The precipitation prayed a vital role on flood.
- The rainy season (April, May, November, and December) is the time when many people and areas are exposed to floods.

-10-

• The Rwanda is mostly dominated by ridges and plateaus including the Congo Nile with a topographic feature that is entirely hilly.

The rain water originating from the ridges, flows towards the valleys which cannot effectively absorb and accommodate all the water owing to the increase in solid wastes from anthropogenic activities that clog culverts, water drainage systems within the area.

- It showed that the eastern province is the part of the country with low flood susceptibility, this can be justified by the topographic nature and the geomorphological aspect of the country.
- The areas with abundance of rainfall fell into highly susceptible classes. After modeling Flood Susceptibility Index, we perceived that the Distance to river and rainfall revealed a negative spatial correlation with flood occurrences.

The next steps of this research

- To collect more flood incidences to accurately validate this model in Rwanda.
- Flood forecasting based on Meteo Rwanda's forecasted rainfall.
- Analysis of exposed areas and population at district level.

Results

MURAKOZE

THANK YOU

