

UN/Ghana Conference on space technologies for water resources management

Session 1B:Space Technology and Water-related Extremes Floods

Flood Extent Mapping Using Integration of Google Earth Engine and Statistical Thresholding: A Case Study Lare District, Gambella Region, Ethiopia

Presented by: Tsegaye D. Lemma

10-13 May, 2022

Accra,Ghana

Flood Extent Mapping Using Integration of Google Earth Engine and Statistical Thresholding: A Case Study Lare District, Gambella Region, Ethiopia

Tsegaye D. Lemma^{*1, 2}, Paolo Gamba³, and Gizachew Kibate²

¹Department of Satellite Research, Development & Operations, Aeronautics and Astronautics Center, Ethiopian Space Science and Technology Institute (ESSTI), P.O. Box 33679, Addis Ababa, Ethiopia;

²Department of Remote Sensing Research & Development, Entoto Observatory and Research Center (EORC), Ethiopian Space Science and Technology Institute (ESSTI), P.O. Box 33679, Addis Ababa, Ethiopia;

³Department of Electrical, Biomedical and Computer Engineering, University of Pavia, Pavia, Italy; paolo.gamba@unipv.it

Correspondence: meonaddis@gmail.com / tsegayed@essti.gov.et Tele +251911908387

Outlines

> Background
> Problems & Objectives
> Materials and Methods
> Results and Discussion
> Conclusion

Acknowledgements

Reference used

Background

Report shows that Water-Related (WRD), such Disasters as cyclones, floods, and droughts, account for 90% of natural disasters. Since the year 2000, over 5300 WRD have been reported, with over 325,000 fatalities and an economic loss exceeding USD 1.7 trillion globally (Perera et al., 2019).

https://www.bbc.com/news/world-europe-57862894 Germany

Cont'd...

More recently, extreme weather variability has shown a significant increase in the occurrence of floods globally account for approximately 54% of all causing WRD, unprecedented deaths, diseases, and *destruction* of property and crops.

https://twitter.com/Flood_List/status/1428057813436321804/ photo/1

Problems and Objectives

Problems

- Why it is difficult to mapping the actual flood extent?
- → Depends on thresholding techniques?
- → Lack of sufficient economic budget and historical data record.

Objectives

- Estimate the flood inundated over the study area;
- → Introduce Open Cloud-based flood inundation extent mapping in Lare Woreda

Study Area

Among 25 districts, the four districts(Kebele's) were identified as flooded in July 26,2021 namely, Tender, Mangog, Buimkun, and Nibnib. The districts are located in the floodplain of Baro river.

Materials and Methods

Resources:

Google Earth Engine (GEE) https://earthengine.google.com /platform/

Sentinel-1 Level-1 Ground Range Detected (GRD) imagery

JRC Global Surface Water Mapping Layers, v1.3

WWF HydroSHEDS Void-Filled DEM, 3 Arc-Seconds

QGIS Version 20.

Administrative shapefile level (0-4)

ESRI-LULC 2020

Source:

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario

Methods

Preprocessing

- Apply-orbit-file (updates orbit metadata)
- ARD border noise removal (removes low intensity noise and invalid data on the scene edges)
- Thermal noise removal (removes additive noise in sub-swaths)
- Radiometric calibration (computes backscatter intensity using sensor calibration parameters)
- Terrain-correction (orthorectification)
- Conversion of the backscatter coefficient (σ°) into decibels (dB)
- Smoothing filter to reduce the inherent speckle-effect of radar imagery (i.e Refined Lee Speckle filter)
- Change Detection approach followed

Results and Discussion

- ★ After basic preprocing steps we applied additional refining techniques such as;
- JRC Global Surface Water Mapping Layers, v1.3 (used to Mask out permanent water(>10 months)
- WWF HydroSHEDS Void-Filled DEM, 3 Arc-Seconds

remove areas with over 5 % slope)

Results and Discussion

0

Flood afected Kebele's in Lare Woreda in 2020 Recurrent flooding has caught the attention of disaster relief agencies; Preparing quick flood extent map Legend Providing near real-time flooding information to relief a gencies and localgovernment. Study Area 2020 Flood Band 1: Flooded ESRI 2020 LULC Legend Water Trees Grass Flooded Vegetation Furthermore, integrating with Cropd Scrub/Shrub 925000 Built Area other socioeconomic data (i.e Bare land Snow/lce Clouds LULC, Population density, ... ESRI Map etc) allow us to predict the 910000 total damage (Cao et al., 2019)

Results and Discussion

In this work we tried to map the flood extent. and calculate the total area which area affected by flood. And compare the results with previous one. (Mehmood et al., 2021)

The summary table shown in next slide.

The flood extent map of study area July 26. 2021

Summary Table

Ttotal	dhreshol	The flooded area in Hectare in month of July only					
Area in							
Hectare		2021	2020	2019	2018	2017	Ávg
3307.34	1.25	71.64	50.17	49.58	74.79	91	67.43
4909.94	1.25	100.6	127.87	144.84	74.67	69.83	103.56
4399.89	1.25	36.35	268.31	434.94	107.46	40.26	177.46
7057.1	1.25	147.35	105.66	132.12	192.7	104.3	136.42
1 9674.2		355.94	552.01	761.48	449.62	305.38	484.87
	Ttotal Area in Hectare 3307.34 4909.94 4399.89 7057.1 1 9674.2	Ttotal dthreshol Area in Hectare 3307.34 1.25 4909.94 1.25 4399.89 1.25 7057.1 1.25 19674.2 1.25	Ttotal dhreshol 1 Area in 2021 Hectare 2021 3307.34 1.25 71.64 4909.94 1.25 100.6 4399.89 1.25 36.35 7057.1 1.25 147.35 19674.2 355.94	Ttotal Area in HectaredhresholThe flooded202120203307.341.2571.6450.174909.941.25100.6127.874399.891.2536.35268.317057.11.25147.35105.6619674.2355.94552.01	Ttotal Area in HectaredhresholThe flooded area in Hect 20213307.341.2571.6450.1749.584909.941.25100.6127.87144.844399.891.2536.35268.31434.947057.11.25147.35105.66132.1219674.2355.94552.01761.48	Ttotal Area in HectaredhresholThe flooded area in Hectare in month 20213307.341.2571.6450.1749.5874.794909.941.25100.6127.87144.8474.674399.891.2536.35268.31434.94107.467057.11.25147.35105.66132.12192.719674.2355.94552.01761.48449.62	Ttotal Area in HectareThe flooded area in Hectare in month of July only3307.341.2571.6420202019201820173307.341.2571.6450.1749.5874.79914909.941.25100.6127.87144.8474.6769.834399.891.2536.35268.31434.94107.4640.267057.11.25147.35105.66132.12192.7104.319674.2355.94552.01761.48449.62305.38

Conclusions

- → We understood that, even though lack of high resolution data and forecasting models in developing country like Ethiopia, using the open and freely available fine resolution data and "Potential" processing platform (i.e GEE) offering a unique solution for researcher, DRRM and Decision makers.
- → From this research work, flood extent map derived from Sentinel-1 SAR provides a reliable information for "Before", "During", and "After" flood event.
- → Integrating satellite derived information and socioeconomic dataset will minimize the risk of natural disasters like floods.

Acknowledgment

- UN/Ghana, 2022 Conference Organizers
- Open software developers (i.e QGIS), Cloud processing and Data providers such as,
- Google Earth Engine Developers, ESA, Copernicus Program, NASA-USGS

References

Abaya, S. W., Mandere, N., & Ewald, G. (2009). Floods and health in Gambella region, Ethiopia: A qualitative assessment of the strengths and weaknesses of coping mechanisms. Global Health Action, 2(1), 1–10. https://doi.org/10.3402/gha.v2i0.2019

Cao, H., Zhang, H., Wang, C., & Zhang, B. (2019). Operational flood detection using Sentinel-1 SAR data over large areas. Water (Switzerland), 11(4). https://doi.org/10.3390/w11040786

Eriksen, S., O'Brien, K., & Rosentrater, L. (2008). Climate change in eastern and southern Africa: Impacts, Vulnerability and Adaptation (Vol. 2). www.gechs.org/publications/reports/

Mehmood, H., Conway, C., & Perera, D. (2021). Mapping of flood areas using landsat with google earth engine cloud platform. Atmosphere, 12(7), 1–16. https://doi.org/10.3390/atmos12070866

Perera, D., Seidou, O., Agnihotri, J., Rasmy, M., Smakhtin, V., Coulibaly, P., & Mehmood, H. (2019). Flood Early Warning Systems: A Review Of Benefits, Challenges And Prospects 08. http://inweh.unu.edu/publications/

Tarekegn, T. H., Haile, A. T., Rientjes, T., Reggiani, P., & Alkema, D. (2010). Assessment of an ASTERgenerated DEM for 2D hydrodynamic flood modeling. International Journal of Applied Earth Observation and Geoinformation, 12(6), 457–465. https://doi.org/10.1016/j.jag.2010.05.007

Thank you!!!

If you have additional comments or questions

Contact us through;

meonaddis@gmail.com/ tsegayed@essti.gov.et