

In the name of God

Ministry of energy

Flood damage assessment on crop lands using Sentinel-1 and Sentinel-2 imageries in Khuzestan

S. Sheshangosht, N. Karimi, M. Rashtbari Water Research Institute (WRI) Tehran, Iran

10th of May 2022, Accra, Ghana

Overview

Flood inundation in Iran

- Iran is exposable country in Flood inundation (2016, 2018 and 2019)
- The northern and southern provinces are in a high risk
- Flash floods damage different sectors (infrastructures, agriculture, water, livestock)

UNSOOA (2019) <u>102838 ha croplands/Orchards</u>
<u>3339 livestock killed</u>

Agenda for flood inundation mapping Increase accuracy of croplands, fish-ponds & waterbodies Maps

Overview

Sentinel-1 and Sentinel-2 in WRI

✓ Mapping Flood extended area (Sentinel_1,GRD)

- Create continues maps from the whole flooded area
- Data acquisition in cloudy condition
- water bodies and flood discriminating

✓Crop Type detection (Sentinel_1,GRD)

- Identifying crop type texture, water index
- ✓Aquafers Subsidence mapping (Sentinel_1,SLC)
 - Radar interferometry
- ✓ Land cover/ Land use mapping (Sentinel_2,Multi-Temporal)

Sentinel-1 for Flood inundation

Benefits

Limitation

- Take images in different weather conditions
- Relatively consistent datasets
- Predictable image capture
- Noisy imagery
- Affected by wind
- Urban areas and field boundaries poorly mapped
- Outputs easily miss-understood

Solution: Using S2 multi-temporal images to misclassified areas (Fields, cities) /to enhance outputs visual quality

How to Map? How much area are undergrown by flood?

Study area

Sentinel-1 and Sentinel-2 tiles

Downloading Sentonel-1 and Sentinal-2 of Study area from ESA open access hub

• The Tiles of Sentinel-1

• The Tiles of Sentinel-2

Flood mapping Method using Sentinel-1

- 1. Downloading Sentinel-1 GRD data, simultaneously with flood event
- 2. Opening the Amplitude-VV band and subset
- 3. Calibrate the band and output sigma-0 band
- 4. Remove Speckle noise by lee filter
- 5. Water threshold determination Using histogram picks, by trail and error
- 6. Correct the Geometric correction of the image (Range Doppler Terrain correction) with SRTM 3scd DEM
- 7. Extraction water area using Band math
- 8. Visualization and Mapping
- 9. Post processing (majority filter, generalization)
- Which Land covers inundated by Flood?
- How many/much agricultural lands affected by Flood?

Land use land cover mapping dataset

Remote Sensing data

- Very High resolution images (Google Earth images)
- High resolution images (S2 NDVI/NDWI time series)

Ancillary Data

- DEM
- water resource Points

Field Sampling

- Field observation sample
- Sampling from Google Earth

NDVI: Normalized Difference Vegetation Index NDWI: Normalized Difference Water Index

Why NDVI/NDWI time series?

May

July

Why NDVI/NDWI time series?

May

July

Why NDVI/NDWI time series?

May

July

Land use land cover mapping method

Accuracy Assessment

Using Mobile application

- Training samples
- Accuracy assessment

Results

Results

Flood inundation of Khuzestan in 14th of April 2019 on Google Earth

Flood inundation on crop lands

Flood inundated

Flood inundation on Fish-ponds

Flood inundated

Results

Number and the area of each land class affected by Flood

Results

Number and the Area of each land class affected by Flood

Land cover class	Number	Damaged Area (km ²)	Total Area	Damage (%)
Dry Farming	176	1296	16520	8
Irrigation Crops	8142	47214	74914	63
Orchards	2081	309	2378	13
Fallow-lands	250	15129	31197	48
Built- up area	222	852	39053	2
Fish-ponds	1184	4142	14489	29
Total	12055	68942		
	10473	62652		

Suggestion

- 1. Monitoring the LULC maps in the flood prone plains using 100/200/500 years flood maps with assistant of flood forecasting teams in WRI and IRIMO(Iran Meteorological Organization)
- 2. Evaluation the crop yield loss for each crop type (Wheat, barley, rice, corn, vineyards and orchards) by crop type mapping (using combination of S2 and S1 time-series) and high resolution images (SPOT, IRS, Landsat) cooperating with ISA (Iran Space Agency)
- 3. Comparison crop yield loss with data of Ministry of Agriculture
- 4. Estimating the recharge of wetlands/ waterbodies with cooperation of department of environment
- 5. Monitoring Land cover change on Flood Inundation rate using High temporal satellite images (Landsat, Spot)
- 6. Increase public knowledge about flood inundation, hazards and post effect by holding regular workshops/online webinars with cooperation of Foreign Agencies (UNOOSA, FAO)

Thank you