Estimation of Chlorophyll-a on Lake Victoria Using Satellite Based Multi-Linear Regression Models

United Nations/Ghana/PSIPW - 2022

10 -13 MAY 2022

Jesse Buyungo*(1) Prof. Anthony Gidudu (1) Lydia Letaru (1)

(1) Makerere University,Uganda jessebuyungo48@gmail.com agidudu@cedat.mak.ac.ug crystlbale@gmail.com

Outline

Background

- Due to urbanization, increasing human population and associated activities around Lake Victoria, the water quality has continuously been affected by nutrient loads from industries, agriculture, sewage leading to algal blooms.
- Traditionally in situ measurements of Chlorophyll-a are used to measure and monitor this detoriation in water Quality.
- However, this process is laborious, time consuming, limited to time and space.

Background Cont.....

- We explored the use of Satellite Based (Landsat 8) multiple linear regression models in estimating this Chlorophyll a
- Because Landsat 8 imagery is

✓ Freely Available,

- ✓ synoptic coverage & regular collection
- ✓ Ideal Spatial Resolution (30m) for small inlets such as bays, landing sites over Ocean Colour Remote Sensors
- ✓e.g. MODIS (250m), MERIS(300m)

Objectives

Main Objective

• To estimate chlorophyll a concentration on Lake Victoria using multi-linear regression Models based on Landsat 8 Imagery.

Specific Objectives

- To develop and determine the best model to estimate Chlorophyll-a from In situ measurements and Landsat 8 imagery.
- To determine the Lake Victoria's Trophic status

Results

Multiple Linear Regression Model`	Model Number	R ²	RMSE	RPD(%)	Adj R ²
Log Chl-a = -129.048B1 + 18.068B2 + 54.834B3 + 50.248B4 -19.266B5 + 8.216	M_1	0.7635	0.7970	3.61161	0.3695
Log Chl-a = -129.899B1 +17.364.982B2 +56.355B3 + 29.501B4 + 8.604	M_2	0.7551	0.8111	3.15265	0.5102
Log Chl-a = -124.622B1 + 25.420B2 + 71.202B3 + 9.535B5 + 7.285	M_3	0.7517	0.8167	3.50136	0.3534

Best Model: Model M_2

Results

Modelled Chlorophyll-a Concentration on Lake Victoria

Lake Victoria's Modelled Trophic Status

Conclusions

- Measures to reduce on the amount of nutrient inflow and discharge into the lake should be undertaken.
- More research should be carried out to develop Lake Victoria specific Chlorophyll-a retrieval Algorithms

Beneficiaries of this research

- National Water & Sewage Cooperation, Uganda
- National Fisheries Resource Research, Institute Uganda
- Ministry of Water and Environment, Uganda
- Other Researchers in Water Quality Modelling(World wide)

Merci Beaucoup

Questions?