

Satellite Remote Sensing in Support of African Water Quality Management

Striving to Ensure Confidence in EO Water Quality Data

Steven Greb Director, GEO AquaWatch and University of Wisconsin, Madison, WI. USA

UNITED NATIONS / GHANA / PSIPW 5TH INTERNATIONAL CONFERENCE ON THE USE OF SPACE TECHNOLOGY FOR WATER RESOURCES MANAGEMENT

"to the government in the forms of serving in office, offering advice about public policy, providing information and exercising technical skill, and to the citizens in the forms of doing research directed at solving problems that are important to the state and conducting outreach activities"

Systematic processing of satellite data

Systematic processing of satellite data

http://dnr.wi.gov/lakes/viewer/

Link to web site

Sobering Water Facts of Africa

- 663 million people rely on unimproved sources, including 159 million dependent on surface water
- Contaminated water can transmit diseases such diarrhea, cholera, dysentery, typhoid and polio.
- Poor sanitation and water quality practices result in 115 deaths every hour in the African Region (WHO Regional Office for Africa).
- Africa is home to 677 lakes, 25% of the planet's unfrozen surface fresh water.
- Many of the rivers and lakes in Africa are shared by more than 1-2 or more countries leading to political stress, where the parties interested keep conflicting over the ownership/usage of the resources.
- Unequal distribution of water (e.g. 30% of the continent's water is found in the Congo Basin
- Dearth of Water Quality Information

Sensor	Sensor	Resolution	Spec. Bands	Revisit Frequency	Data Cost	Launch	Water Quality Variables						Macrophytes		
Туре		(Pixel size)				Date									
							CHL	CYP	TSM	CDOM	Kd	Turb	Emerg.	Float	Subm.
high spatial re- solution	QuickBird, SPOT6, GeoEYE	2 - 4 m	3 - 4	programmable 60 d to 2–3 d	5-15	1999 on- wards	•	S		•	•	•	•	•	•
	RapidEye	6.5 m	5	daily	1.5	Aug-08		S							
	WorldView-2	2 m spectral, 0.5 m B&W	8	programmable 60 d to 1 d	30	Oct-09	•		•	•	•	•	•	•	•
	WorldView-3	1.2 m spectral, 0.5 m B&W	8	programmable 60 d to 1 d	30	2014	•	•	•	•	•	•	•	•	•
ocean-coastal	OLCI	300 m	21	daily (2 sats.)	free	2016									
ocean-coastal	SGLI-2	250 m	9	2 – 4 d	free	2017		S							
	JPSS-1, JPSS-2, etc.	750 m	10	daily	free	2017, 2022	•	8	•	•	•	•	•	•	•
	JPSS-1, JPSS-2, etc.	375 m	3	daily	free	2017, 2022	•	•	•	•	•		•	•	
	OCM-3	300 m	15	2-3 d	free	2017									
hyperspectral	EnMap	30 m	90	programmable (once/4 d)	free (?)	2019	•	•	•	•	•	•	•	•	•
	DESIS	30 m	235	orbit 51°N, 51°S, 3 to 5 d cadence	free (?)	2018	•	•	•	•	•	•		•	
	HISUI-hyper	30 m	60	orbit 51°N, 51°S, 3 to 5 d cadence	free (?)	2018	•	•	•	•	•	•		•	•
	PRISMA	20 m spectral, 2.5 m B&W	60	25 d/ pointing 7d	free (?)	2018	•	•	•	•	•	•	•	•	•
	HvSnIRI*	30	60	16	free	2022									

Table 6.4 - Continued from previous page

* The 2017 US Decadal Survey recommended several designated target observables, including surface biology and geology (SBG), SBG has candidate measurement approaches that are similar to the HyspIRI mission concept that NASA was developing over the past decade, including inland and near-coastal aquatic ecosystems.

SPECTRAL COVERAGE

that are simuar to the Hyspiki mission concept that NASA was developing over the past decade, including

⊞

Topp et. al.,2020

https://appliedsciences.nasa.gov/whatwe-do/capacity-building/arset

https://www.copernicus.eu/en/opport unities/education/copernicus-academy

Entrance ramps to data products

Cloud Resources

Entrance ramps to data products

Thematic Exploitation Platform

Entrance ramps to data products

A call for *in situ* observations

- Optimize algorithm parameterizations for full range of OWTs or regions
- Validate algorithms and data products over the lifetime of satellite missions
- Fill spatial and temporal gaps in satellite data coverage

GEO AquaWatch

AquaWatch aims to develop and build the global capacity and utility of Earth Observationderived water quality data, products and information to support water resources management and decision making.

Website

