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SPACE-TIME GEOSTATISTICAL MODELLING AND MAPPING OF OF 

MALARIA RISK
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Global malaria picture

Malaria for instance is a global challenge which continuous to affect deprived 
communities  especially in sub-Saharan Africa

Source: https://malariaatlas.org/trends/region/MAP/GLOBAL

PLASMODIUM FALCIPARUM CLINICAL CASES IN ALL AGE GROUPS IN 2019



MALARIA AS A GLOBAL CHALLENGE

▪ Maps have often been developed based on point reference data from demographic 

and health survey data

▪ (Fobil et al, 2012)

▪ (Yankson et al, 2019)

▪ (Gemperli et al, 2006)

▪ Such data are however not routine, hence updating such maps is not feasible 

within shorter time periods

▪ They fail to examine the temporal trends 
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DHIMS DATA FOR SURVEILLANCE 

▪ Routine surveillance managed through health information manage systems can rather 

be helpful

▪ Despite such data are routinely collected, they have poor spatial and temporal 

resolution.  

▪ For instance the 

▪ DHIMS is currently deployed by many developing countries to store and manage 

aggregated morbidity data

▪ Accessible spatial resolution is at the district levels

▪ Accessible temporal resolution is monthly 
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LOCAL ACTION GAPS

▪ Malaria 

▪ They remain a major public health burden in developing countries, especially in 

sub-Saharan Africa 

▪ Most studies 

▪ either focus on the spatial patterns at a particular point in time 

▪ or the temporal patterns for an entire geographic area 

▪ Why?

▪ data challenges and/or 

▪ unavailable easy to implement statistical methods 
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STATIC AND DYNAMIC REMOTELY SENSED COVARIATES (1 KM X 1 KM)
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THE POISSON DATA GENERATING PROCESS

▪ We consider malaria counts and population data

▪ 𝑦𝑖𝑡 , 𝑛𝑖𝑡

▪ As spatio-temporal outcomes of malaria and population data disaggregated by 

▪ districts 𝑖 = 1,… ,𝑚 = 216

▪ months 𝑡 = 1,… , 𝑇 = 55 (from Jan 2012 to July 2016)

▪ Such sampling models are typically realizations from the Poisson process

▪ 𝑦𝑖𝑡ȁ𝑟𝑖𝑡~𝑃𝑜𝑖 𝜆𝑖𝑡

▪ log 𝜆𝑖𝑡 = log 𝑛𝑖𝑡 + log 𝑟𝑖𝑡

▪ log 𝑟𝑖𝑡 = 𝛽0 + σ𝑘=1
𝐾 𝛽𝑘𝑡𝑥𝑖𝑘𝑡 + σ𝑝=1

𝑃 𝜔𝑘𝑧𝑖𝑘

▪ 𝑥𝑖𝑘𝑡 represent the dynamic covariates/predictors

▪ 𝑧𝑖𝑘 represent the static covariates/predictors
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STANDARD SEMIVARIANCE ESTIMATION

▪ Here, the maximum likelihood estimate of the residual risk is

▪ 𝜏𝑖𝑡 =
𝑦𝑖𝑡−𝜆𝑖𝑡

𝑛𝑖𝑡

▪ Assuming the risk was not a ratio variable, then 

▪ The spatio-temporal variogram represents the semi-variance between any pair of 

risks estimates which are separated by spatial lag ℎ and/or temporal lag 𝑢: 

▪ 𝛾 h, u =
1

2
𝔼 𝜏𝑖𝑡 − 𝜏𝑖+ℎ,𝑡+𝑢

2

▪ 𝛾∗ h, u =
1

2
σ𝑁 h,u 𝜏𝑖𝑡 − 𝜏𝑖+ℎ,𝑡+𝑢

2
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MODIFIED SEMI-VARIANCE ESTIMATION

▪ The standard nonparametric geostatistical methods for semivariogram estimation 

used for continuous data are not directly applicable for the current model due to the

▪ Heteroscedasticity (varying variance inversely proportional to the population)

▪ non-stationarity of the process of counts

▪ 𝛾∗ h, u =
σ𝑁 h,u

𝑛𝑖𝑡∙𝑛𝑖+h,𝑡+u
𝑛𝑖𝑡+𝑛𝑖+ℎ,𝑡+𝑢

𝜏𝑖𝑡−𝜏𝑖+h,𝑡+u
2
−ത𝜏

2 σ𝑁 h,u

𝑛𝑖𝑡∙𝑛𝑖+h,𝑡+u
𝑛𝑖𝑡+𝑛𝑖+h,𝑡+u

▪ Where the population weighted average risk is 

▪ ҧ𝜏 =
σ 𝑛𝑖𝑡∙𝜏𝑖𝑡
σ 𝑛𝑖𝑡
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EMPIRICAL SPACE-TIME SEMI-VARIOGRAM
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The space-time variogram clearly shows indication of space-time correlation 



SPACE-TIME SEMI-VARIOGRAM MODELS
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The combination of exponential, spherical and Gaussian 
space-time variogram models 



SPACE-TIME SEMI-VARIOGRAM MODEL PARAMETERS AND ASSOCIATED 

SSErr

Estimates

Parameters EEE SSS ESE EES ESS SES SSE SEE

Parameters A B C D E F G H

𝜏𝑠
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

𝜏𝑡
2 0.08 1.48 0.51 0.08 0.53 0.06 0.02 0.00

𝜏𝑠𝑡
2 13.05 13.44 12.28 13.05 13.05 13.44 12.83 13.46

𝜎𝑠
2 23.75 23.27 23.55 23.75 23.75 23.27 23.06 23.26

𝜎𝑡
2 2.13 0.06 0.01 2.13 1.03 2.13 0.02 2.14

𝜎𝑠𝑡
2 0.00 0.00 2.37 0.00 0.00 0.00 2.80 0.00

𝜙𝑠 8.86 22.33 8.87 8.86 8.86 22.33 22.25 22.38

𝜙𝑡 5.44 0.4 0.4 5.45 0.4 5.45 0.4 5.13

𝜙𝑠𝑡 1.69 1.56 4.49 1.48 1.54 1.58 5.54 6.92

SSErr 8.18 7.08 8.23 8.18 8.41 6.85 6.87 6.85
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A (spatial: Exponential, temporal: Exponential, joint: Exponential); B (spatial: spherical, temporal: spherical,

joint: spherical); C (spatial: exponential, temporal: spherical, joint: exponential); D (spatial: exponential,

temporal: exponential, joint: spherical); E (spatial: exponential, temporal: spherical, joint: spherical): F (spatial:

spherical, temporal: exponential, joint: spherical); G (spatial: spherical, temporal: spherical, joint:

exponential); H (spatial: spherical, temporal: exponential, joint: exponential)



SPACE-TIME PREDICTION

▪ The prediction equation is a weighted average of neighboring risks

▪ Ƹ𝜏𝑖𝑜,𝑡0 = σ𝑖𝑡
𝑚𝑇 𝜆𝑖𝑡𝜏𝑖𝑡

▪ Therefore 

▪ Ƹ𝑟𝑖0,𝑡0 = exp 𝛽0 + σ𝑘=1
𝐾 𝛽𝑘𝑡𝑥𝑖0,𝑘𝑡 + σ𝑝=1

𝑃 ෝ𝜔𝑘𝑧𝑖0,𝑘 + Ƹ𝜏𝑖𝑜,𝑡0

▪ The kriging weights express the strength of the association between observation 

locations and the prediction location, estimated as 

▪ 𝜆𝑖𝑡 = 𝛾0
𝑇𝛾−1

▪ The kriging weights takes into consideration the the spatial covariances between all 

data points as well as the covariances between the prediction locations and 

observation location
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UNCERTAINTIES AND CROSS VALIDATION

▪ Prediction uncertainties were assessed through the kriging variance  

▪ 𝜎2 s0, t0 = 𝛾0
𝑇𝛾−1𝛾0

▪ We further used the leave-one-out cross validation (LOOCV) to assess the 

prediction accuracy.

▪ The Root Mean Square Error (RMSE) is then used to assess the accuracy of 

the kriging predictions. 

▪ 𝑅𝑀𝑆𝐸 =
1

𝑚×𝑇
σ𝑠=1
𝑚 σ𝑡=1

𝑇 𝜏𝑖𝑡 − Ƹ𝜏𝑖𝑡
2
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RESULTS: JAN-JUNE-2012
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RESULTS: WEEKS IN JUNE 2012
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CONTRIBUTIONS/CONCLUSIONS 

▪ Methodology

▪ Developed a spatial statistical framework for space-time prediction of malaria

▪ The method is transferable to other diseases with similar data structure

▪ Epidemiologically

▪ Observed spatial correlation of malaria risk, reflecting spatial clustering 

▪ The spatial clustering is heterogenous across times/different months 

▪ The spatial patterns and clusters are somehow spatially persistent 

▪ Further/Future work

▪ Account for over-dispersion since the Poisson assumption has no variance 

parameter

▪ Improve the prediction by incorporating high temporal resolution external 

information for the covariates
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CONCLUSIONS 

▪ We have shown here that spatial statistics can be employed for analyzing and 

modelling geographically referenced health data

▪ Either point pattern, lattice, or geostatistical data in terms of the underlying data 

generating process 

▪ Points and area data in terms of the feature representation

▪ The methods demonstrated in the sample studies are only few. With more 

challenging data structure, different relevant methods can be adapted and/or 

emerge 

▪ This affirms that the beautiful marriage between spatial statistics and public 

health conceives GeoHealth
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THANK YOU

▪ Q $ A
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