UNIVERSITY OF TWENTE.

Space-time geostatistical modelling of malaria risk

DR. FRANK BADU OSEI ASSISTANT PROFESSOR UNIVERSITY OF TWENTE

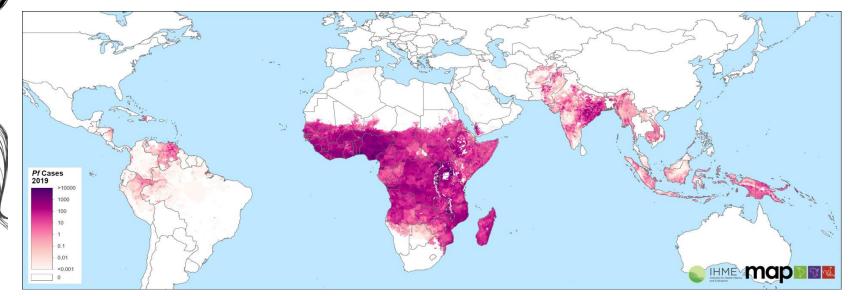
FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

SPACE-TIME GEOSTATISTICAL MODELLING AND MAPPING OF OF MALARIA RISK

Global malaria picture

Malaria for instance is a global challenge which continuous to affect deprived communities especially in sub-Saharan Africa

PLASMODIUM FALCIPARUM CLINICAL CASES IN ALL AGE GROUPS IN 2019



Source: https://malariaatlas.org/trends/region/MAP/GLOBAL

MALARIA AS A GLOBAL CHALLENGE

- Maps have often been developed based on point reference data from demographic and health survey data
 - (Fobil et al, 2012)
 - (Yankson et al, 2019)
 - (Gemperli et al, 2006)
 - Such data are however not routine, hence updating such maps is not feasible within shorter time periods
 - They fail to examine the temporal trends

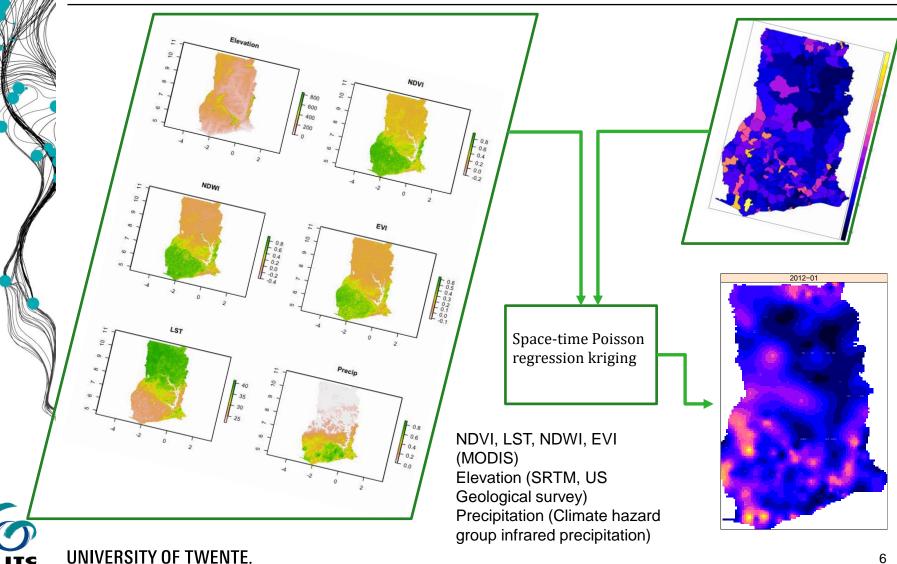
DHIMS DATA FOR SURVEILLANCE

- Routine surveillance managed through health information manage systems can rather be helpful
- Despite such data are routinely collected, they have poor spatial and temporal resolution.
- For instance the
 - DHIMS is currently deployed by many developing countries to store and manage aggregated morbidity data
 - Accessible spatial resolution is at the district levels
 - Accessible temporal resolution is monthly

LOCAL ACTION GAPS

- Malaria
 - They remain a major public health burden in developing countries, especially in sub-Saharan Africa
 - Most studies
 - either focus on the spatial patterns at a particular point in time
 - or the temporal patterns for an entire geographic area
 - Why?
 - data challenges and/or
 - unavailable easy to implement statistical methods

STATIC AND DYNAMIC REMOTELY SENSED COVARIATES (1 KM X 1 KM)



THE POISSON DATA GENERATING PROCESS

- We consider malaria counts and population data
 - $\{y_{it}, n_{it}\}$
- As spatio-temporal outcomes of malaria and population data disaggregated by
 - districts $i = 1, \dots, m = 216$
 - months t = 1, ..., T = 55 (from Jan 2012 to July 2016)
- Such sampling models are typically realizations from the Poisson process
 - $y_{it}|r_{it} \sim Poi(\lambda_{it})$
 - $\log \lambda_{it} = \log n_{it} + \log r_{it}$
 - $\log r_{it} = \beta_0 + \sum_{k=1}^K \beta_{kt} x_{ikt} + \sum_{p=1}^P \omega_k z_{ik}$
 - *x*_{ikt} represent the dynamic covariates/predictors
 - *z*_{ik} represent the static covariates/predictors

STANDARD SEMIVARIANCE ESTIMATION

Here, the maximum likelihood estimate of the residual risk is

•
$$au_{it} = \frac{(y_{it} - \lambda_{it})}{n_{it}}$$

- Assuming the risk was not a ratio variable, then
- The spatio-temporal variogram represents the semi-variance between any pair of risks estimates which are separated by spatial lag *h* and/or temporal lag *u*:

•
$$\gamma(\mathbf{h},\mathbf{u}) = \frac{1}{2} \mathbb{E} (\tau_{it} - \tau_{i+h,t+u})^2$$

•
$$\gamma^*(h, u) = \frac{1}{2} \sum_{N(h, u)} [\tau_{it} - \tau_{i+h, t+u}]^2$$

MODIFIED SEMI-VARIANCE ESTIMATION

- The standard nonparametric geostatistical methods for semivariogram estimation used for continuous data are not directly applicable for the current model due to the
 - Heteroscedasticity (varying variance inversely proportional to the population)
 - non-stationarity of the process of counts

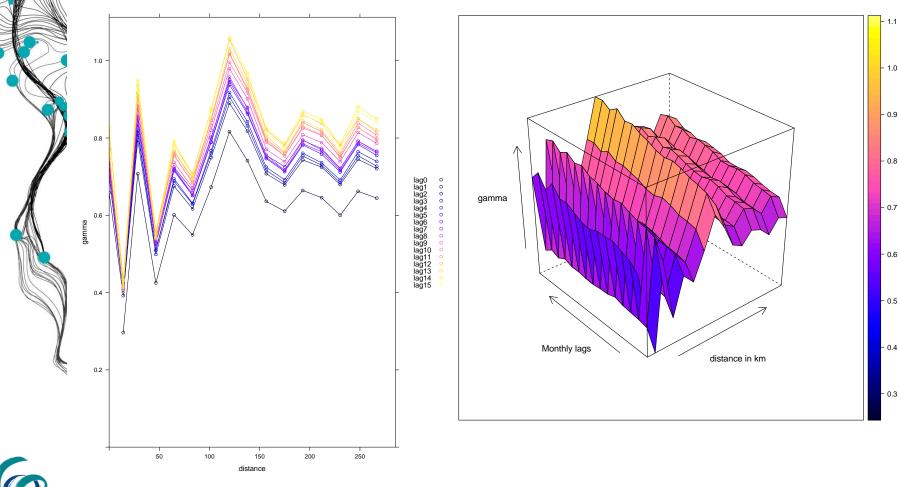
•
$$\gamma^*(\mathbf{h},\mathbf{u}) = \frac{\sum_{N(\mathbf{h},\mathbf{u})} \left\{ \frac{n_{it} \cdot n_{i+\mathbf{h},t+\mathbf{u}}}{n_{it}+n_{i+\mathbf{h},t+\mathbf{u}}} [\tau_{it} - \tau_{i+\mathbf{h},t+\mathbf{u}}]^2 - \overline{\tau} \right\}}{2\sum_{N(\mathbf{h},\mathbf{u})} \frac{n_{it} \cdot n_{i+\mathbf{h},t+\mathbf{u}}}{n_{it}+n_{i+\mathbf{h},t+\mathbf{u}}}}$$

Where the population weighted average risk is

•
$$\bar{\tau} = \frac{\sum n_{it} \cdot \tau_{it}}{\sum n_{it}}$$

EMPIRICAL SPACE-TIME SEMI-VARIOGRAM

The space-time variogram clearly shows indication of space-time correlation



c UNIVERSITY OF TWENTE.

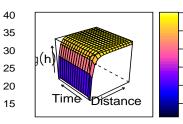
SPACE-TIME SEMI-VARIOGRAM MODELS

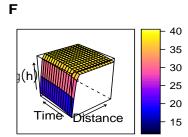
The combination of exponential, spherical and Gaussian space-time variogram models

Е

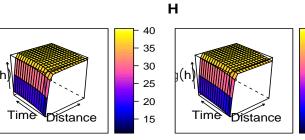








G



SPACE-TIME SEMI-VARIOGRAM MODEL PARAMETERS AND ASSOCIATED SSErr

		Estimates							
Parameters	EEE	SSS	ESE	EES	ESS	SES	SSE	SEE	
Parameters	А	В	С	D	E	F	G	Н	
τ_s^2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
τ_t^2	0.08	1.48	0.51	0.08	0.53	0.06	0.02	0.00	
τ_{st}^2	13.05	13.44	12.28	13.05	13.05	13.44	12.83	13.46	
σ_s^2	23.75	23.27	23.55	23.75	23.75	23.27	23.06	23.26	
σ_t^2	2.13	0.06	0.01	2.13	1.03	2.13	0.02	2.14	
σ_{st}^2	0.00	0.00	2.37	0.00	0.00	0.00	2.80	0.00	
ϕ_s	8.86	22.33	8.87	8.86	8.86	22.33	22.25	22.38	
ϕ_t	5.44	0.4	0.4	5.45	0.4	5.45	0.4	5.13	
ϕ_{st}	1.69	1.56	4.49	1.48	1.54	1.58	5.54	6.92	
SSErr	8.18	7.08	8.23	8.18	8.41	6.85	6.87	6.85	

A (spatial: Exponential, temporal: Exponential, joint: Exponential); B (spatial: spherical, temporal: spherical, joint: spherical); C (spatial: exponential, temporal: spherical, joint: exponential); D (spatial: exponential, temporal: exponential, joint: spherical); E (spatial: exponential, temporal: spherical, joint: spherical); F (spatial: spherical, temporal: exponential, joint: spherical); G (spatial: spherical, temporal: spherical, joint: exponential, joint: exponential); H (spatial: spherical, temporal: exponential, joint: exponential, joint: exponential); H (spatial: spherical, temporal: exponential, joint: exponential); H (spatial: spherical, joint: joint: spherical); H (spatial: spherical, joint: spherical); H (spatial: spherical, joint: spherical); H (spatial: spherical); H (spatial: spherical); H (spatial: spherical); H (

SPACE-TIME PREDICTION

- The prediction equation is a weighted average of neighboring risks
 - $\hat{\tau}_{io,t0} = \sum_{it}^{mT} \lambda_{it} \tau_{it}$
- Therefore
 - $\hat{r}_{i0,t0} = \exp(\beta_0 + \sum_{k=1}^{K} \hat{\beta}_{kt} x_{i0,kt} + \sum_{p=1}^{P} \hat{\omega}_k z_{i0,k}) + \hat{\tau}_{i0,t0}$
- The kriging weights express the strength of the association between observation locations and the prediction location, estimated as

•
$$\lambda_{it} = \gamma_0^T \gamma^{-1}$$

 The kriging weights takes into consideration the the spatial covariances between all data points as well as the covariances between the prediction locations and observation location

UNCERTAINTIES AND CROSS VALIDATION

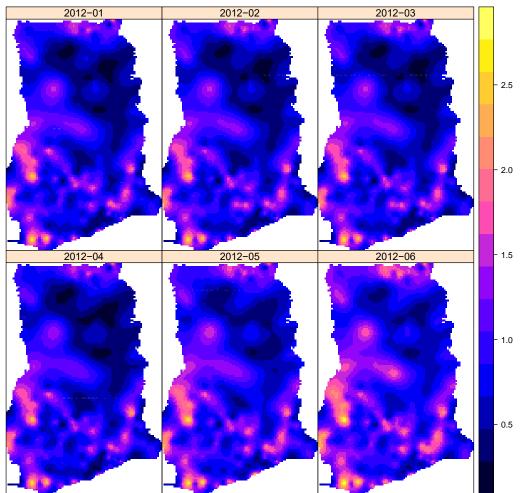
Prediction uncertainties were assessed through the kriging variance

•
$$\sigma^2(\mathbf{s}_0,\mathbf{t}_0) = \gamma_0^T \gamma^{-1} \gamma_0$$

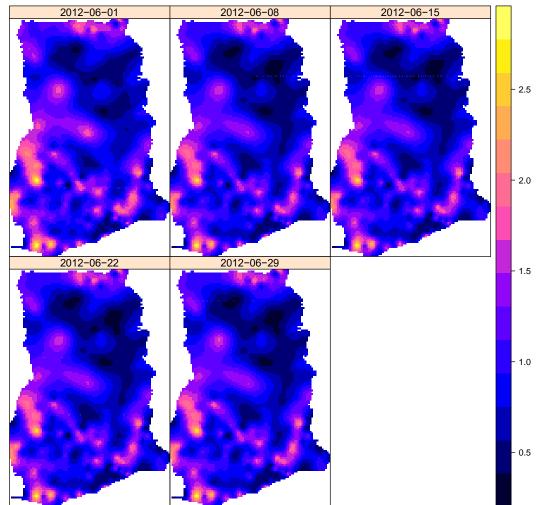
- We further used the leave-one-out cross validation (LOOCV) to assess the prediction accuracy.
- The Root Mean Square Error (RMSE) is then used to assess the accuracy of the kriging predictions.

•
$$RMSE = \sqrt{\frac{1}{m \times T} \sum_{s=1}^{m} \sum_{t=1}^{T} (\tau_{it} - \hat{\tau}_{it})^2}$$

RESULTS: JAN-JUNE-2012



RESULTS: WEEKS IN JUNE 2012



CONTRIBUTIONS/CONCLUSIONS

Methodology

- Developed a spatial statistical framework for space-time prediction of malaria
- The method is transferable to other diseases with similar data structure

Epidemiologically

- Observed spatial correlation of malaria risk, reflecting spatial clustering
- The spatial clustering is heterogenous across times/different months
- The spatial patterns and clusters are somehow spatially persistent
- Further/Future work
 - Account for over-dispersion since the Poisson assumption has no variance parameter
 - Improve the prediction by incorporating high temporal resolution external information for the covariates

CONCLUSIONS

- We have shown here that spatial statistics can be employed for analyzing and modelling geographically referenced health data
 - Either point pattern, lattice, or geostatistical data in terms of the underlying data generating process
 - Points and area data in terms of the feature representation
 - The methods demonstrated in the sample studies are only few. With more challenging data structure, different relevant methods can be adapted and/or emerge
 - This affirms that the beautiful marriage between spatial statistics and public health conceives GeoHealth

THANK YOU

• Q \$ A

