Application of Variable Infiltration Capacity (VIC) Model to Support Water Resources Management in Tanzania

RCMRD/SERVIR-Eastern & Southern Africa Nairobi, Kenya

Presenter: Kasiti Felix

SERVIR Focuses on Countries in Asia, Africa, and the Americas

SERVIR Eastern & Southern Africa Services

SERVIR E&SA - joint development initiative of United States Agency for International Development (USAID) and National Aeronautics and Space Administration (NASA). SERVIR E&SA is helping countries in Eastern and Southern Africa Region use information provided by Earth observing satellites data and geospatial technologies to improve environmental management and resilience to climate change. It empowers decision-makers with tools, products, and services to act locally on climate-sensitive issues within the following thematic areas;

Area of Interest

Great Ruaha River Basin 83,970 sq. km. (32,421 sq. mi.) Wami- Ruvu Basins

Variable Infiltration Capacity Model (VIC)

- Developed by Xu Liang at the University of Washington
- Semi-distributed macroscale hydrologic model
- Solves full water and energy balances
- Land Surface = >1KM grid cells No communication between grid cells → Need to use a routing model
- Water can only enter a grid cell from the atmosphere

Cell Energy and Moisture Fluxes

۷i

C

Canopy

Laver 0

Layer 1

Grid Cell Vegetation Coverage

/ariable Infiltration Curve i = i_m[1 - (1 - A)^{1/b})]

Fractional Area

□W_□

wu

Capacity

ation

VIC Model Setup Workflow

Free & Open-Source Approach

Dataset	Use	Source	
SRTM DEM (30m)	Elevation Raster Slope Raster	NASA/ USGS via Google Earth Engine	
MODIS Land Cover (MCD12Q1) (500m)	IGBP Classified Raster	NASA LP DAAC via Google Earth Engine	
CHIRPS Daily Precipitation	Annual Precipitation Raster/ Forcings	UCSB-CHG via Google Earth Engine	
WWF HydroSHEDS Drainage Direction (3 Arc Seconds)	Flow Direction Raster	WWF via Google Earth Engine	
HWSD Soils MU Global – v 1.2 (30 Arc Seconds)	Classified Soils Raster	FAO SOILS PORTAL http://www.fao.org/soils-portal/en/	
NCEP/NCAR Reanalysis 1	Forcings (Max Temp, Min Temp, Wind Speed)	https://psl.noaa.gov/data/gridded/da ta.ncep.reanalysis.surface.html	
MERRA-2 Reanalysis Data Dailly	Forcings (Max Temp, Min Temp, Wind Speed)	NASA https://gmao.gsfc.nasa.gov/reanalysi s/MERRA-2/	
MODIS LAI/ FPAR 4-Day Global (500m) (MCD15A3H)	Monthly LAI Rasters for Period of Record	NASA LP DAAC via Google Earth Engine	
MODIS BRDF-Albedo 16-Day Global (500m) (MCD43A2)	Monthly Albedo Rasters for Period of Record	NASA LP DAAC via Google Earth Engine	

Routing of flow

• Multi-gauge routing

Model Calibration & Validation

	CHIRPS	TAMSAT	IMERG	GSMAP
NSE	0.65	0.53	-0.71	-0.14
Bias	-6.63	-14.61	5.96	-26.54
RMSE	39.62	46.06	87.34	71.51

	CHIRPS	TAMSAT	IMERG	GSMAP
NSE	-2.78	0.15	-11.14	-0.14
Bias	69.67	-0.62	121.36	-27.56
RMSE	145.03	68.83	259.84	79.47

Product – Streamflow Monitoring Viewer

Streamflow Monitoring and Forecasting for Data and Water Resources Planning, Allocation and Management addressing competing demands (http://streamflowmonitor.rcmrd.org/).

Operational Hydrological Model Tool

Streamflow Monitoring & Forecasting Tool - Time Series

Streamflow Monitoring Viewer–Flow Curve S

Water Balance not closing – Uncertainty in the input, observed discharge & model errorstructure

Streamflow Monitoring Viewer–Flow Indices SERVIR®

Streamflow Monitoring &	Forecasting Tool	💩 Download 👻 📕 POI I	List		Search Q
River Gauge Stations	River Gauge Station Details			×	CartoDB - Street Map
Filter \$ Sort	Station Information Simulated Streamf	low Flow Curve Duration	Resource Availability Forecast Stre	amflow	Stations
♥ Tanzania : 1KA31 >	Study Sub-Catchment Discharge	Study Sub-Catchment Discharge			Basins
	Units	m ³ /sec	Million m ³ /day		Wami Basin Ruvu Basin
	Reserve / Environmental Flow	16.95	1.46		Country
	Normal Flow	19.98	1.73		
	Flood Flow	30.26	2.61		
	Flood Discharge (Allocation)	10.27	97.21		
	Study Sub-Catchment - Spring Fl	ow Conditions			
	Units	m ³ /sec	Million m ³ /day		
	Reserve / Environmental Flow	0	0		
	Normal Flow (Domestic Use)	0	0		
	Flood Discharge (Commercial Allocation)	0	0		
			Download Data	Close	Developed by SERVIR E&SA and RCMRDJ Attribution

Thank You

RCMRD

