

CENTISPACETM System Experimental Satellites PPP Application Test

October, 2023

Beijing Future Navigation Technology Co., Ltd.

✓ PART 01: Brief Introduction of CENTISPACE TM

■ With the rapid growth of modern information industries like 5G, mobile internet, autonomous driving, and artificial intelligence, traditional meter-level precision navigation services are no longer sufficient to meet user demands. There is a rising demand for high-precision navigation services in various sectors.

Traditional Professions

Surveying, mapping, disaster monitoring, smart grid, communication network, ocean engineering, and more, with demands ranging from sub-meter to millimeter level.

UAV Applications

With an Annual Shipment Volume of Nearly 4 Million Units, Fundamental Demand for Low-Cost and High-Precision Satellite Navigation.

Consumer Electronics

With over 5 billion smartphones worldwide, real-time dynamic positioning accuracy of better than 0.3m is essential for pedestrian navigation, and interactive gaming.

Internet of Vehicles, Internet of Things

- Global vehicle market: 2 billion vehicles require real-time lanelevel navigation accuracy better than 0.3m; autonomous driving demands 10cm.
- Global terminal device network: 50 billion devices require positioning accuracy of 0.05-0.5m for IoT.

PART 01: Brief Introduction of CENTISPACE™

■ With the rapid growth of modern information industries like 5G, mobile internet, autonomous driving, and artificial intelligence, traditional meter-level precision navigation services are no longer sufficient to meet user demands. There is a rising demand for high-precision navigation services in various sectors.

Traditional Professions

Surveying, mapping, disaster monitoring, smart grid, communication network, ocean engineering, and more, with demands ranging from sub-meter to millimeter level.

UAV Applications

With an Annual Shipment Volume of Nearly 4 Million Units, Fundamental Demand for Low-Cost and High-Precision Satellite Navigation.

Consumer Electronics

With over 5 billion smartphones worldwide, real-time dynamic positioning accuracy of better than 0.3m is essential for pedestrian navigation, and interactive gaming.

Internet of Vehicles, Internet of Things

- Global vehicle market: 2 billion vehicles require real-time lanelevel navigation accuracy better than 0.3m; autonomous driving demands 10cm.
- Global terminal device network: 50 billion devices require positioning accuracy of 0.05-0.5m for IoT.

A centralized system is needed with the **SERVICE FEATURE**: As convenient as basic navigation services, high-accuracy.

PART 01: Brief Introduction of CENTISPACE™

■ The CENTISPACE System has two main segments:

Space Segment

190 LEO satellites

Sub-constellation I

Constellation: WALKER120/12/1

Orbit altitude: 975km

• Inclination: 55°

Sub-constellation II

Constellation: WALKER 30/3/1

Orbit altitude: 1100km

• Inclination: 87.4°

Sub-constellation III

Constellation: WALKER 40/4/1

Orbit altitude: 1100km

Inclination: 30°

PART 01: Brief Introduction of CENTISPACETM

■ During the Signal Design Process, the Following Factors Were Considered:

• Lower user device complexity:

Common hardware (antenna, filter, A/D, etc.)

Interoperability with MEO system :

Common frequency band and reference frame

Interoperability with GEO augmentation system:

Common frequency band and reference frame

Compatibility with MEO and GEO systems :

No signal interference

LEO

PART 01: Brief Introduction of CENTISPACE™

■ Signal Frequency

Finally, the combination of L1 and L5 bands is the preferred option.

PART 01: Brief Introduction of CENTISPACE™

■ Signal Frequency

Our ITU filings

table/worksheet Nongeolist

TOTAL:					8
CENTISPACE-4	A	CHN	See TSUM	<u>50</u>	3002
CENTISPACE-4	C	CHN	See TSUM	<u>50</u>	3001
CENTISPACE-3	C	CHN	See TSUM	<u>50</u>	2965
CENTISPACE-3	A	CHN	See TSUM	50	2953
CENTISPACE-2	C	CHN	See TSUM	50	2913
CENTISPACE-2	A	CHN	See TSUM	<u>50</u>	2896
CENTISPACE-1	C	CHN	See TSUM	50	2898
CENTISPACE-1	A	CHN	See TSUM	<u>50</u>	2891
SATELLTIE NAM	E CAT	EGORY ADM NTWK O	ORG DATE OF PROTECTION	N STAT	US WIC
_					

Contact BR | Help | News | FAQ | Home | Related Software | Space IFIC Revised: 10 October 2023

Space Segment

- Currently, we have 5 experimental satellites in orbit.
- Platform and payload experiments have been successfully conducted.
- As the testing is still in progress, the data presented in this report is derived from two
 of these satellites.

CENTISPACE-S1 (Launch: 29 Sep 2018)

CENTISPACE-S3/S4 (Launch: 6 Sep 2022)

CENTISPACE-S5/S6 (Launch: 7 Oct 2022)

■ Ground Segment

- We have constructed 10 monitor stations.
- For the PPP demonstration, two stations(DG03 and BJHD) are selected.

Distribution of the ground stations

Ground tracks of ESAT1 and ESAT2 experimental satellites during 03:40:00-03:50:00 on April 1, 2023.

■ Signal Receive Test

Static Test

Dynamic Test

■ GNSS Observation Quality for BDS satellites

Multipath statistical results:

For B1C signal: 0.027-0.482m.

For B2a signal: 0.019-0.332m.

 Are both within the acceptable range of 0.5m.

Multipath Evaluation for BDS C39

These findings align with the results from iGMAS tracking stations.

■ GNSS Observation Quality for BDS satellites

 Pseudo range noise measurement for BDS signals: <8cm.

 Carrier phase noise measurement for BDS signals: <2mm.

BDS Measurement Noise
Observed by Space-borne GNSS Receiver

These results demonstrate the high precision of our GNSS observations for BDS signals.

■ Precise Orbit Determination: Results of BDS Satellites

Precision orbit determination results based on BDS observation, about 5cm.

■ Precise Orbit Determination: Results of LEO Satellites

- LEO satellites orbit determination residual of pseudo range: 0.563m (RMS).
- LEO satellites orbit determination residual of carrier phase: 0.634cm (RMS).

LEO precision orbit determination residual

These results demonstrate the high precision achieved.

■ Augmentation of Two LEO Satellites: Track Compare

Sky-view tracks in one orbit arc

(black lines: GPS, red lines: BDS, blue lines: Galileo, green lines: LEO)

Sky-view tracks of two LEO satellites in 20 days

A longer track indicates faster movement, and can provide more information for the PPP algorithm.

Augmentation of Two LEO Satellites: Potential for PPP

- Compared in different scenarios, with and without LEO augmentation.
- Benefits of LEO augmentation:
 - Reduced Convergence Time(about 50% for this data)
 - Improved Positioning Precision

GNSS	W/O	LEO	With LEO		
system	Convergence	3D precision	3D precision Convergence 3		
number	time (min)	(cm)	time (min)	(cm)	
1	32.7	6.1	16.7	5.2	
2	17.9	4.6	8.9	3.9	
3	14.2	4.6	5.7	3.8	

These findings highlight the potential of LEO augmentation, and larger improvements can be achieved with more LEO satellites to be deployed in the future.

PART 03: Future Applications

- Accelerate the Development of LEO-augmented Navigation Basic Products utilizing Existing Application Industries
 - **Upgrade products quickly:** To achieve rapid development, we collaborate with chip manufacturers for quick product upgrades.
 - **Expand to various fields:** Expand LEO augmentation to various fields, may starting with drones and lane-level navigation.

Chip development

The functionality of LEO augmentation can be added through software upgrades while utilizing existing hardware resources.

Antenna development

Simultaneous reception of navigation signal and LEO enhanced signal with similar frequencies.

Board/module development

Can be designed for integrated use in various professional devices through chip customization.

Terminal integration

Customizing User-Oriented
Terminal Machines with
Added Communication and
Storage Modules.

PART 03: Future Applications

Upgrading and Expansion of Application Solutions with LEO **Augmentation**

Traditional high-precision

Such as surveying and mapping, can be empowered with LEO augmentation.

Emerging high-precision

LEO augmentation can be expanded into new fields like IoT, leading industry development and tapping into potential demand.

Transportation industry

LEO augmentation can enhance its capabilities to meet new demands like autonomous driving and lane-level navigation.

Mass consumption

LEO augmentation offers advantages such as low cost, convenient use, and integration into mobile devices.

PART 03: Future Applications

■ Wide Construction of Service Platforms to Promote LEO Augmented Value-Added Applications

PART 04: Development Plan

Next Steps

- Complete the construction of the entire constellation within several years.
- Provide worldwide augmentation navigation services.
- This will augment existing navigation systems and provide precise positioning.

THANKYOU FOR YOUR ATTENTION!

Beijing Future Navigation Technology Co., Ltd

No.81 Beiging Road, Haidian District, Beijing, China

Email: xuml@centispace.com