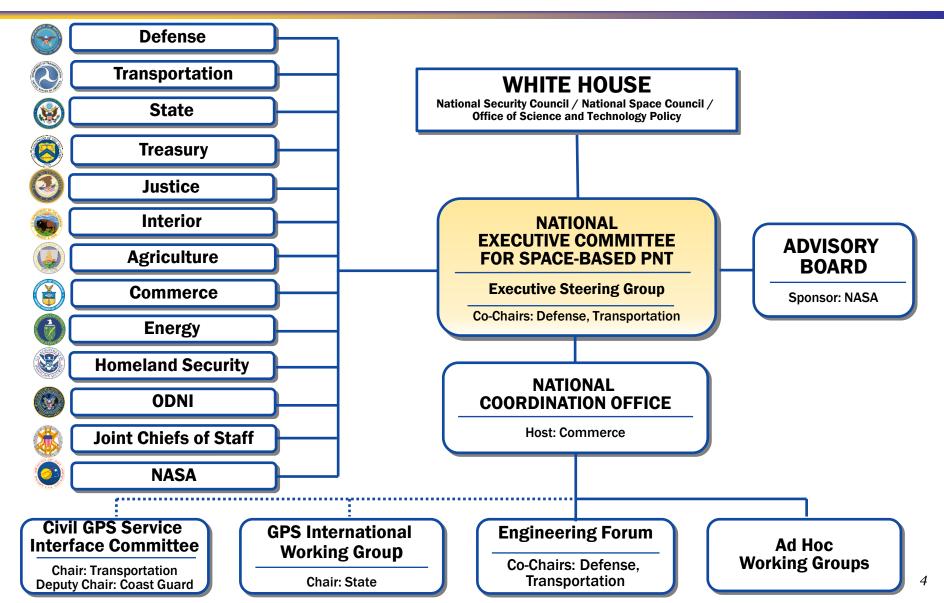
U.S. GPS Program Update and International Activities to Protect GNSS Spectrum

Office of Space Affairs U.S. Department of State

22 April 2024

- PNT Policy
- Program Update
- GNSS Spectrum Protection, IDM and the ICG

U.S. Space-based PNT Policy (2020 NSP & SPD-7)


Maintain U.S. leadership in the service provision, and responsible use of GNSS, including GPS and foreign systems

- Ensure **compatibility** ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
- Encourage **interoperability** ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service
- Promote **transparency** in civil service provision and enable **market access** for U.S. industry
- Promote and support the **responsible use of GPS** as the pre-eminent space-based PNT service
- Foreign space-based PNT services may be used to complement civil GPS service
 - Receiver manufacturers should continue to improve security, integrity, and resilience in the face of growing cyber threats
- Encourage foreign development of PNT services and systems based on GPS
- Support international activities to **detect**, **mitigate**, **and increase resilience** to harmful disruption or manipulation of GPS

National Space-Based PNT Organizations

GPS Constellation Status

38 Satellites • 31 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age (yrs)	Oldest	
GPS IIR	7 (3*)	22.1	26.5	
GPS IIR-M	7 (1*)	16.3	18.3	
GPS IIF	11 (1*)	10.0	13.7	
GPS III	6 (1*)	3.3	5.1	

*Not set healthy

As of 01 Feb 2024

GPS Signal in Space (SIS) Performance

From 31 Dec 22 to 31 Dec 23

Average URE*	Best Day URE	Worst Day URE		
48.7 cm	33.4 cm (22 Jun 23)	165.7 cm (25 Jan 23)		

*All User Range Errors (UREs) are Root Mean Square values

GPS Modernization

Space Segment			SI	/ families provide L-Ban	d broade	cast to User Segment
GPS IIA/IIR • Basic GPS • Nuclear Detonation Detection System (NI		• Longer Life Power • Better Clocks	5) • Acc • Incr • Inhe • 4 th (• Lon • Bett	III (SV01-10) uracy & Power eased Anti-Jam Power erent Signal Integrity Civil Signal (L1C) ger Life ter Clocks	 Unifie Trac Sear Payle Lase Rede 	r Retroreflector Array esigned NDS Payload
Control Segmen	t	TT&C o	of Space S	Segment assets & distrib	ution of	data to user interfaces
Legacy (OCS) • Mainframe System • Command & Control • Signal Monitoring	 Architecture Evolution Plan (AEP) Distributed Architecture Increased Signal Monitoring Coverage Security Accuracy 	OCX Block 0 • GPS III Launch & Checkout System GPS III Contingency Ops • GPS III Mission on AEP	· · · ·	OCX Block 1/2 • Fly Constellation & C • Begin New Signal C • Upgraded Information Assurance	ontrol	OCX Block 2+ • Control all signals • Capability On-Ramps • GPS IIIF Evolution

User Segment

Continued support to an ever-growing number of applications

- Annual Public Interface Control Working Group (ICWG)
- Standard Positioning Service (SPS) Performance Standard Updates
- Precise Positioning Service (PPS) Enhancements
- Sustained commitment to transparency
- Visit GPS.gov for more info

Applies Space and Control Segment data for PNT applications

Modernized Civil Signals

- L2C (Various commercial applications)
- L5 (Safety-of-life, frequency band protected)
- L1C (Multi-GNSS interoperability)



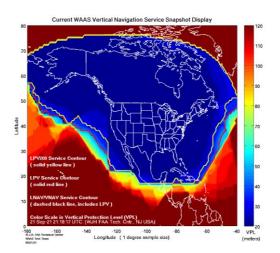
- SV01 Set healthy and available for use on 13 Jan 20
- SV02 Set healthy and available for use on 1 Apr 20
- SV03Set healthy and available for use on 1 Oct 20
- SV04 Set healthy and available for use on 2 Dec 20
- SV05 Set healthy and available for use on 25 May 22
- SV06 Set healthy and available for use on 16 Feb 23

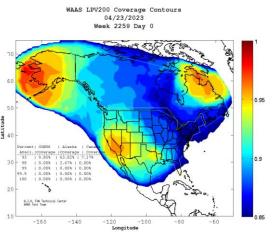
Additional GPS III SVs in storage

- SV07 in storage Target June 2024 launch
- SVo8 in storage Target Fiscal Year 2025 launch
- SV09 in storage Target Fiscal Year 2025 launch
- SV10 in Storage Target Fiscal Year 2026 launch

Next Generation Operational Control System (OCX)

- Next-generation command, control and cyber-defense for GPS
 - Enhanced command and control capability
 - Modernized architecture
 - \circ $\,$ Robust information assurance and cyber security
- Incremental Development
 - OCX Block 0: Launch and Checkout System (LCS) for GPS III
 - OCX Blocks 1 and 2: Controls and manages all GPS spacecraft and signals
 - OCX 3F: Adds support for GPS IIIF vehicle and new capabilities
- Current Status
 - Launch and Checkout for GPS III SV01-SV06
 - OCX Block 1 completed factory integration and in Golden Dry Run for factory qualification





Wide Area Augmentation System (WAAS)

- WAAS provides high availability service to aviation users in North America
- Developing Dual Frequency WAAS
 - Will enable high availability of WAAS vertical service during ionospheric disturbances
- GEO Sustainability
 - Currently maintaining 3 GEO constellation
- WAAS Modernization Efforts
 - Dual Frequency Multi-Constellation (DFMC)
 - Advanced Receiver Integrity Monitoring (ARAIM)
 - Authentication/Resiliency
 - Transition to IP based communications network
 - Security Upgrades

WAAS Procedures and Avionics Equipage

- Procedures:
 - 4,127 Localizer Performance with Vertical Guidance (LPV) approaches in the NAS (as of Feb 2024)
 - 1,116 provide CAT I (200') equivalent performance
- Equipage
 - General Aviation:
 - Over 131,000 equipped aircraft in the NAS
 - All classes of aircraft are served in all phases of flight
 - o Airlines
 - Airline integration through MMRs
 - Main aircraft with SBAS capability in the US A220
- Enabling technology for NextGen Programs
 - Automatic Dependent Surveillance Broadcast (ADS-B)
 - Performance Based Navigation (PBN)

Global Perspective

- Global Constellations
 - GPS (24+3)
 - GLONASS (24+)
 - GALILEO (24+3)
 - BDS/BEIDOU (27+3 IGSO + 5 GEO)

- Regional Constellations
 - QZSS (4+3)
 - IRNSS/NAVIC (7)
 - Korea KPS (7)
- Satellite-Based Augmentations
 - WAAS (3)
 - MSAS (2)
 - EGNOS (3)
 - GAGAN (3)
 - SDCM (3)
 - BDSBAS (3)
 - KASS Korea (2)
 - SPAN Australia/NZ (2)

International Committee on GNSS (ICG)

- Pursuing a Global Navigation Satellite System-of-Systems to provide civil GNSS services that benefit users worldwide
 - Promote the use of GNSS and its integration into infrastructures, particularly in developing countries
 - Encourage compatibility and interoperability among global and regional systems
- U.S. priorities include spectrum protection, system interoperability and information dissemination
- 17th Meeting held in Madrid, Spain in October 2023
- New Zealand will host the 18th Meeting in October 2024

- "Protection" is about keeping the spectrum 'clean'
- Clean spectrum means keeping the frequencies near to GNSS free from licenced, unlicensed and illegal transmissions that interfere with GNSS reception, e.g.
 - GNSS jammers
 - Uncontrolled GNSS repeater installations
 - Spurious emissions from radio equipment, e.g. motors
 - Other radio services, e.g. TV broadcasts
 - Malfunctioning electronic equipment

- Clean spectrum for GNSS minimizes signal errors and maximizes the performance for GNSS receivers
 - Better and more reliable positioning and timing
 - Faster time to first fix
 - Better tracking performance in challenging environments
- Keeping spectrum clean requires technical means to detect when such interference occurs
- National regulators usually have the capacity to detect strong interferers
 - Direction finding equipment or geolocation techniques
 - The ITU can also help coordinate such activities when cross border interference occurs

- Strong interferers are relatively easy to detect
- However, if weak interferers are far away from the detectors, they will not be seen
- The weak interfering signals are still stronger than GNSS and will have widespread impact on GNSS reception
- To find weak interferers (e.g. 'personal' GNSS jammers) requires more specialised local equipment or a dense detector network
- The ICG has been considering this challenge

- ITU is responsible for international spectrum framework, including the protection of radio services
- Actual implementation of this framework is accomplished by national telecommunication administrations
- National telecommunication administrations work with relevant industries and stake holders
- ICG provides a forum that can facilitate and encourage the protection of GNSS spectrum by its members and participants in a voluntary, nonbinding way

ICG Working Groups

- Systems, Signals and Services (Co-Chairs: U.S. & Russia)
 - Focus on compatibility and interoperability, encouraging development of complimentary systems
 - Exchange information on systems and service provision plans
 - Includes spectrum protection and IDM
- Enhancement of GNSS Performance, New Services and Capabilities (Co-Chairs: India, European Space Agency, China)
 - Focus on system enhancements (multipath, integrity, interference, etc.) to meet future needs
- Capacity Building, Education and Outreach (Chair: UN Office for Outer Space Affairs)
 - Focus on training/workshops, promoting scientific applications, space weather
- Reference Frames, Timing and Applications (Co-Chairs: IAG, IGS & FIG)
 - Focus on timing, monitoring and reference station networks

- Establishment of Compatibility Subgroup in 2011
 - Focused on compatibility issues to include spectrum protection and IDM
- Establishment of Interference Detection and Mitigation Task Force in 2013
 - Objectives include:
 - 1) Develop a common set of information to be reported to GNSS civil service centers
 - 2) Establish routine communications among the (provider service) centers
 - 3) Develop guidelines for common capabilities to be considered in the development of future national IDM networks
 - Ten (11) IDM Workshops held since 2012

19

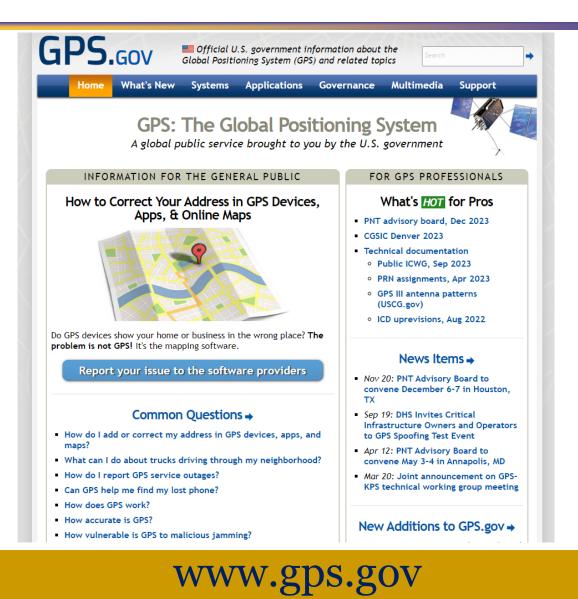
- Workshop held on 15 April 2024, hosted by U.S.
- Agenda included:
- **1) PNT from Low Earth Orbit** *Mr. Bryan Chan, Co-Founder, XONA Space Systems*
- 2) GNSS Interference Detection from Low Earth Orbit Mr. Iain Goodridge, Federal Space Systems, SPIRE
- **3)** Data Exploitation and Enhanced Processing (DEEP) Dr. Steve Lewis, DEEP Chief Engineer, Aerospace Corp
- **4) USDOT IDM Update** *Mr. James Aviles, Senior RF Engineer, Office of Research and Technology, U.S. Department of Transportation*
- **5)** EASA/IATA PNT Resiliency Workshop, 25 Jan, Cologne Germany *Ms. Christina Clausnitzer, U.S. Federal Aviation Administration*
- 6) ICAO EUR/MID Radio Navigation Symposium, Antalya, Turkey Mr. Ken Alexander, Chief Scientist, U.S. Federal Aviation Administration
- 7) Ambient-Aware PNT Professor Dr Renato Filjar, FRIN, Faculty of Engineering, University of Rijeka, Rijeka, Croatia

ICG Recommendations Related to IDM and Spectrum Protection

Recent Recommendations Adopted by the ICG

- 2014/2017 Crowdsourcing capabilities analysis for IDM
- 2015/2016/2017 UN regional workshops on GNSS spectrum protection and IDM
- 2015/2016 Campaign of Protection of RNSS operations GNSS providers and GNSS user community member states promote spectrum protection
- 2015/2016 UN COPUOS multi-year agenda item focused on National Efforts to protect RNSS Spectrum, and develop IDM capability
- 2017 Encourage national regulators to use the protection criteria in relevant ITU-R Recommendations
- 2019 Produce a draft booklet on GNSS/RNSS spectrum Protection based on material used for the ongoing spectrum seminars
- 2022 Incorporating Resilience into GNSS Interference Detection and Mitigation

Other Related Topics Discussed within the ICG



- Adjacent Band Compatibility
- Unintentional Interference
 - Electromagnetic emissions limits from non-licensed transmitters
- Interference Detection and Geo-Location Capabilities
- Critical Infrastructure

For Additional Information...

22