CubeSat Program Status

Jordi Puig-Suari Cal Poly ISU SSP11 July 2011

Cal Poly CubeSat Activities

- * Maintain/Evolve CubeSat Standard
 - * Support Developer Community
- * Develop CubeSat Access (P-POD)
 - * Focus on US Launch Vehicles
- * P-POD Integration Services for any type of user

Cal Poly PolySat Activities

- Develop Student CubeSats
- * Focus on Improved 1U Bus Performance
 - * Electronic Miniaturization
 - * Collaboration with Payload Developers
- * CP series (5 Launched, 3 in-Orbit, 2 in development)

Advanced CubeSat Avionics

High-Performance Custom System

*400Mhz Arm processor ***>512MB of storage & 64MB RAM *<0.6** Watts *****Custom Linux Build *****Integrated power regulation system and sensor suite *****Low profile UHF RF daughterboard *****2W RF output up to 150kbps **CubeSat Mission Enabler ***Minimum bus volume *Avionics/EPS/Comm in 9cmx9cmx2cm *****Custom efficient structure available *****Fast software development *****Open source OS/drivers *****Simple development platform

Student Satellites: Education Tools

Multidisciplinary!

System Integration & Testing

Subsystem Development

Spacecra ft Design

CubeSat Initial Objectives

- * Started in 1999: Stanford-Cal Poly Team
- * Facilitate Access to Space:
 - Rapid Development Time (1-2 years, Student Career)
 - * Low-Cost
 - Launch Vehicle Flexibility
- * Use Standards
- * University Led Program

CubeSat Standard

- PicoSatellite (Small)
- Simple Standard
 - Manageable by universities

• P-POD Deployer

- Protect Primary & Launch Vehicle
- Launch Vehicle Flexibility
- Simplicity
- 3 CubeSats (or 3U spacecraft)
- Risk Containment

Results

- * 44 CubeSats in LEO (63 Launched)
- * 10 Different Launch Vehicles
 - * U.S., Russia, India
 - * 3 more vehicles manifested
- * Large Developer Community
 * University/Gov/Industry
 * New Players
- CubeSat Industrial Suppliers
 Pumpkin, Clyde, ISIS, Tyvak
- * Government Support

Trends

Trends

Lessons Learned

* SPACECRAFT STANDARDS CAN WORK!!

- * Repetition minimizes design, analysis, and testing
- * Large Developer Community
- * Spacecraft/Launch Vehicle Decoupling
 - * Standard Independent of Launch Vehicle
 - * Spacecraft Development without Launch
 - * LV Manifest without Firm Spacecraft
 - * Transfer spacecraft between LV
- * But It is Still Rocket Science
 - * Integration, Test & QA
 - * Large numbers of Spacecraft

New Developments

- Mission Funding Opportunities
 Military: NRO, Army, Air Force
 Science: ESA, NASA, NSF (Space Weather)
- * Education
 - * NASA ELaNa
 - * ESA Vega
- * New Vehicles
 - * Athena
 - * VEGA
 - * Delta II
 - * Atlas V

Future Evolution

* Grow

- * AMES 6U (20x30)
- * Increase Mass (1.33kg)
- * Shrink
 - * PocketQub
 - * (1/n) U CubeSat

- * Maintain Standardization
 - * Simple Launch Vehicle Integration
 - * Maintain Risk Containment
- New Launch Accommodations

The Vision: Getting Closer

Traditional Space

The CubeSat Challenge

CubeSat's limitation is **mindset** not resources

- Need change in approach to develop satellites compatible with CubeSat standard
- Limited Options + Limited Resources + Significant need = High-Risk Unconventional Solutions

The CubeSat Challenge

CubeSat's limitation is **mindset** not resources

- Need change in approach to develop satellites compatible with CubeSat
- Limited Options + Limited Resources + Significant need = High-Risk Unconventional Solutions

"Guerrilla Space"

Mass (Kg)

CubeSat can only accommodate a few payloads

1.5

Increased Payload resources due to optimized bus and operations plan

Optimize Payloads for CubeSat Application

NSF CubeSat RFP was catalyst in Space Weather Community

Payload Optimization Example

SRI's CubeSat Tiny Ionospheric Photometer (CTIP)

- Original Instrument: NRL Tiny Ionospheric Photometer System (TIPS) on COSMIC Satellite
 - * 3000 cm³, 2.3 Kg and 7.6 W Orbit Average

CubeSat Optimized Instrument

- * CTIP: <1000 cm³, <1 Kg and 2-3W Orbit Average
- Matches
 TIPS
 Performance

Lessons Learned in CubeSat Development

- * Highly Integrated Payload/Bus System
 - * Small multidisciplinary team
 - * Take Advantage of Commercial Electronics Development
- * Understand Complete Development Cycle
- * Apply KISS principle
 - * Minimal mission requirements (single instrument)
 - Minimum redundancy (Build 2 single-string CubeSats)
 - * Simple operations model
- * Flexible orbit missions Maximize Opportunities
- Traditional Spacecraft Development Approach May not Apply
 ³¹

Lessons Learned in CubeSat Development

- * Frequent Launches Accelerate Learning Curve
 - * Fast lessons and improved next flight
 - * Multi-mission development plan
 - * NASA-AMES: GeneSat, PharmaSat, OREO, ...
 - * (XI-IV, XI-V, . . .) (UWE 1, UWE 2, . . .) (CP 1, 2, 3, . . .)
- Develop Spacecraft without Firm Launch
- * Understand Regulation
- * Fast Programs can Outrun Paperwork
- * BE CREATIVE!!
- * ALLOW RISK!!

Where are we going?

- * Can Traditional Customers Embrace Risk on Missions?
- * Can Big Space Move Down and Compete?
- * Can Small Space Move up and Win?

Conclusion:

- CubeSat is Successful Standard
- * Mindset is the biggest constraint
- * Higher risk tolerance required
- * Capability is increasing quickly
- * Cannot follow standard spacecraft practices

CUBESAT

* Lessons apply to bigger spacecraft

