

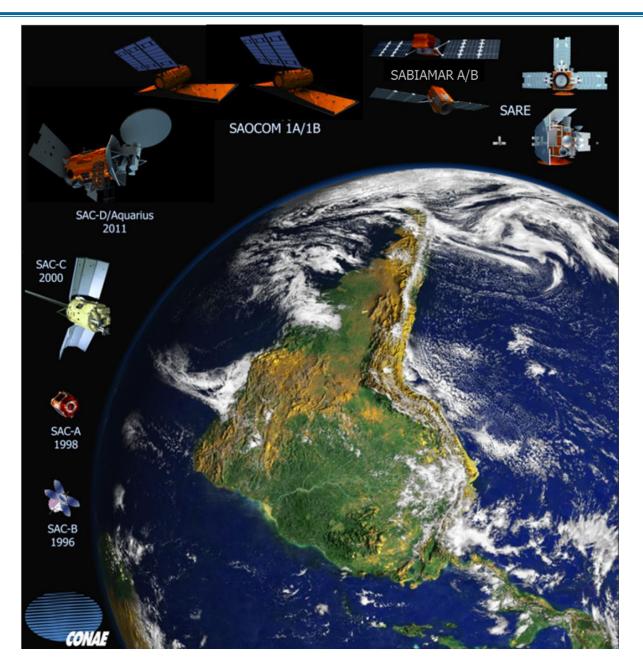
Raúl Kulichevsky

Deputy Technical and Administrative Director Comision Nacional de Actividades Espaciales

CONAE's Main Activities

LAUNCH VEHICLES

GROUND STATIONS



PROCESS & DISTRIBUTION OF SPACE BASED INFORMATION

CONAE in Space

The Argentine Space Program

- "Go to space to know Earth better"
- "An opportunity for the national technology development"

The National Space Program

Information cycles for:

- agriculture, fishing and forest activities
- climate, hydrology and oceanography
- monitoring of the environment and natural resources
- cartography, geology and mining production
- disaster management
- health applications
- national security

T. Tabanera Space Center

Ensayo motor 10 toneladas - 2015

Capacity Building: Gulich Institute

- Master in Space Aplications for Emergencies Management
- Master in Satellite Technology
- Master in Satellite Instruments

Education & Training: 2Mp Program

Educational Program for children: building capacity for the future

- Development of teaching material
- Development of special software
- Teachers training courses
- Special events at schools

Ministerio de Ciencia, Tecnología e Innovación Productiva Presidencia de la Nación Tierra del Fuego Ground Station

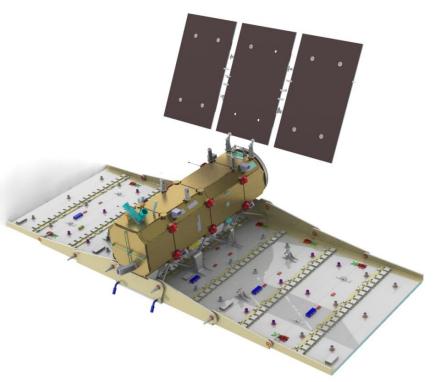
SAOCOM Mission

CONFIGURATION:

Two Satellites with an L-Band SAR Instrument

Orbit: 619.6 km

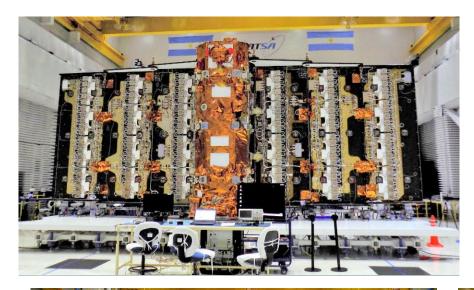
Near Polar Sun-synchronous frozen orbit,


06:00 am ascending node

DIMENSIONS:

- $h = 4.468 \text{ m} \oplus 2.965 \text{ m} \text{ stowed}$ envelope
- 10 m x 3.5 m SAR Active Phase Array antenna
- 15 m² foldable solar array

MASS BUDGET:


3100 kg

SAOCOM 1A

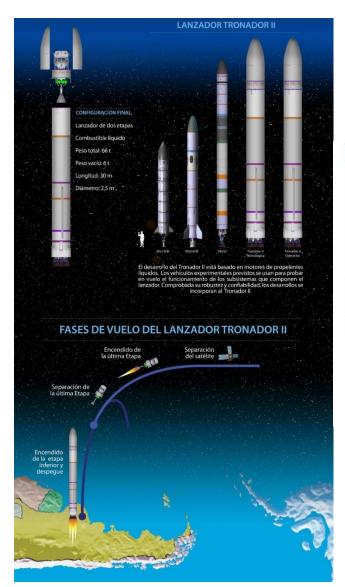


SIASGE

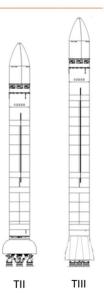
ASI & CONAE

Constelation of 6 satellites with SAR instruments on board, 4 X band (**COSMO-SkyMed**) and 2 in L band (**SAOCOM**):

- \triangleright X + L Bands synergy
- High revisit time


Benefits:

- Synergy between X and L band data, which represents a key for satisfying the different user needs
- Significant improvement in the accuracy of the discrimination among the different surface components
- > Significant improvement in the geophysical parameters quantitative knowledge
- **Very high revisit** for monitoring events of fast evolution
- Improvement in cartographic and change detection studies


Ministerio de Ciencia, Tecnología e Innovación Productiva Presidencia de la Nación Tronador II/III Launch Vehicles

Parámetros derivados de los L2A	TII	TIII
Inf: Masa al despegue	~ 67 Ton	~ 89 Ton
Inf: Empuje al despegue	~ 93 Ton	~ 124 Ton
Req: Masa de propelentes E1 / E2	57320 kg / 3920kg	76426kg / 5227kg
Req: Masa seca sin carga útil E1 / E2:	4460kg / 640kg	4970kg / 705kg
Req: Carga útil a LEO (ascenso directo)	250kg@600km	750kg@600km
Goal: Con segunda ignición en E2:	NO	1000kg@600km
Inf: Altura & Diámetro Central:	~28m & 2.5m (est)	~31m & 2.5m (est)
Req: Isp E1 (@45kPa) / E2 (vac):	265s / 300s	272s / 315s
Inf: Tiempo de quema medio E1 (máx E1) / E2	154s (200s) / 417s	154s (208s) / 556s
Coloscionamos travestarios de assense directa para poder coguirlos desde el lapramiente hasta la invesción		

- Seleccionamos trayectorias de ascenso directo para poder seguirlas desde el lanzamiento hasta la invección con estaciones ubicadas en territorio nacional.
- Así, para el TII se pueden satelizar también 350kg a 400km o 165kg a 700km.
- La capacidad de reencendido mejora la carga a satelizar, aunque demora la inyección que debería seguirse desde estaciones remotas. Esta estrategia se considera para el TIII. El reencendido implica 6 segundos de quema para el caso una órbita de 600km.
- En ambos casos también se puede inyectar en órbitas elípticas.

Thank you very much!

