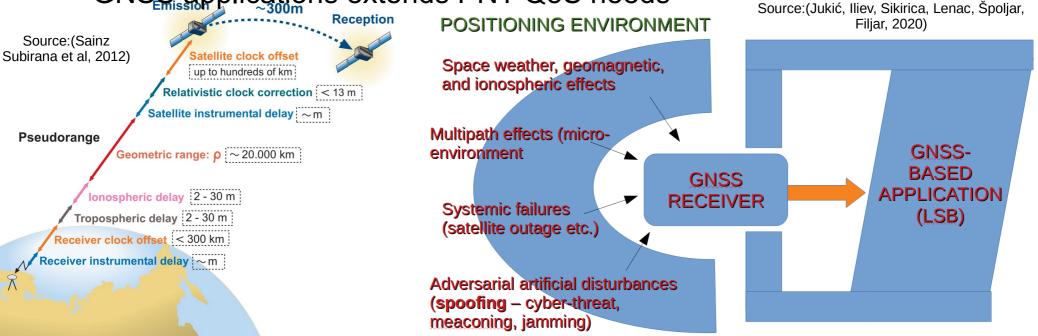

UNITED NATIONS Mongolia Workshop on Applications of GNSS (hybrid) Office for Outer Space Affairs Ulaanbaatar, Mongolia, 25th - 29th October, 2021

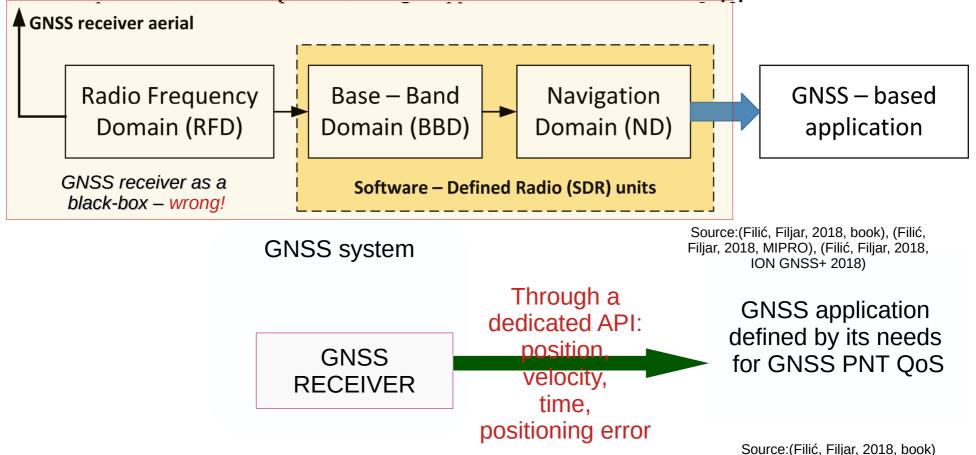
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver

Renato Filjar

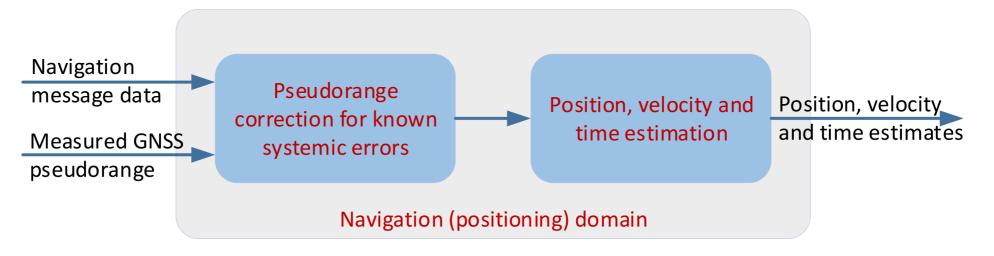
Sveučilište u Rijeci Faculty of Engineering, University of Rijeka, Rijeka, Croatia, and Krapina University of Applied Sciences, Krapina, Croatia

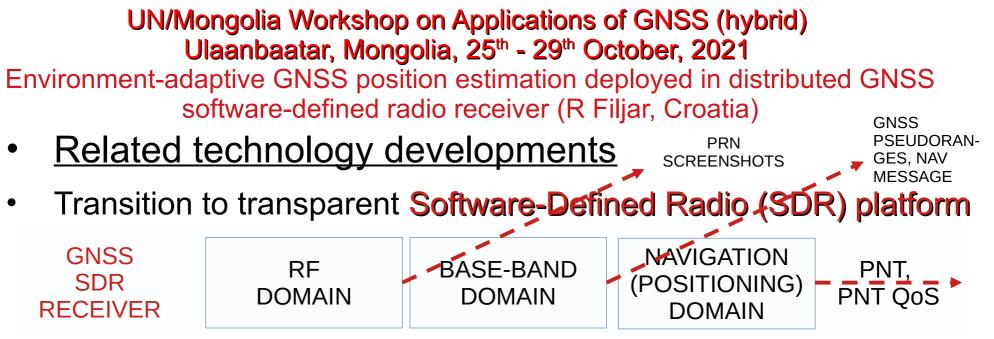

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

<u>Content of presentation</u>


- Problem statement
- State-of-the-art
- Existing and emerging technologies
- Positioning environment-adaptive SDR-based GNSS position estimation algorithm with statistical learning mitigation of ionospheric effects
- GNSS positioning as a service
- The quest of accuracy
- Summary
- Reference

- Problem statement
- Exposure to systematic, natural, and artificial sources of disturbances and disruptions originated in the positioning environment
- Position estimation process associated with a black-box GNSS receiver
- GNSS operators are expected to guarantee PNT QoS, in the uncontrolled positioning environment




- <u>A traditional GNSS application model</u>
- Unnecessary equivalence between a GNSS receiver and a GNSS position estimation process/algorithm as a considerable obstacle in trasnparent definition of the GNSS application QoS

- <u>State-of-the-art GNSS position estimation process</u>
- Input: raw GNSS pseudorange measurements, corrected for known systematic errors (bias, trend, seasonality) using globalised correction models (Klobucar, NeQuick, standard atmosphere-based Saastamoinen); navigation message data
- Various position estimation algorithms based on different optimisation approaches

- <u>State-of-the-art shortcomings</u>
- GNSS pseudorange error correction using the global models → failure in recognition of the real positioning environment conditions
- Specification of the core PNT QoS do not translate into GNSS application QoS needs easily
- Augmentation and assistance (SBAS: WAAS, EGNOS) → additional infrastructure, expensive for establishment, operation, and maintenance
- Additional infrastructure and effort for mitigation of artificial disruptions and disturbances (spoofing, jamming), while potential GNSS cyberattacks may raise the mitigation costs
- Calls for 'GNSS receiver standardisation' and 'certification'

- Availability of the positioning environment-related observations, real-time and archived (space weather, geomagnetic, ionospheric, and tropospheric conditions)
- Motion and environment sensors availability in users devices
- Raising **computational capacity** of user devices
- A wide-spread use of statistical learning methods
- Availability of efficient methods for sensor information fusion
- Advanced computational architectures and services (cloud, mist, advanced encryption and authentication etc.)

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- <u>Mathematical foundations of GNSS position estimation</u> process
- GNSS position estimation algorithm as a solution of the optimisation problem

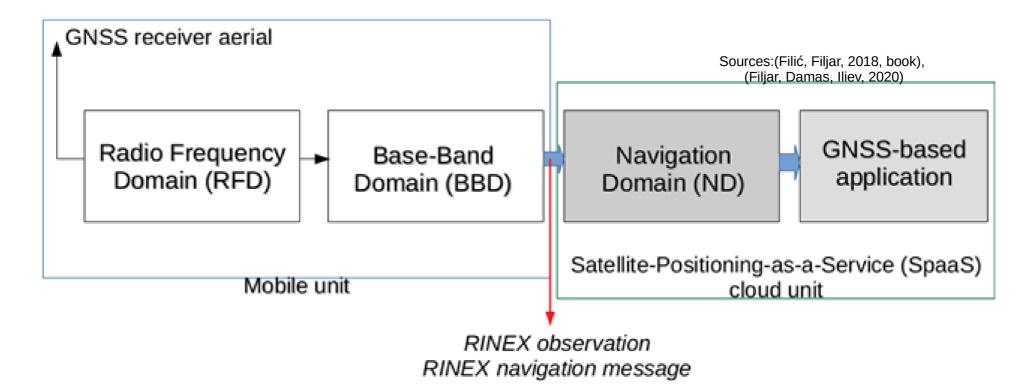
$$d_{1} = \sqrt{(x - x_{s1})^{2} + (y - y_{s1})^{2} + (z - z_{s1})^{2}} + c \cdot d_{T}$$

$$d_{2} = \sqrt{(x - x_{s2})^{2} + (y - y_{s2})^{2} + (z - z_{s2})^{2}} + c \cdot d_{T}$$

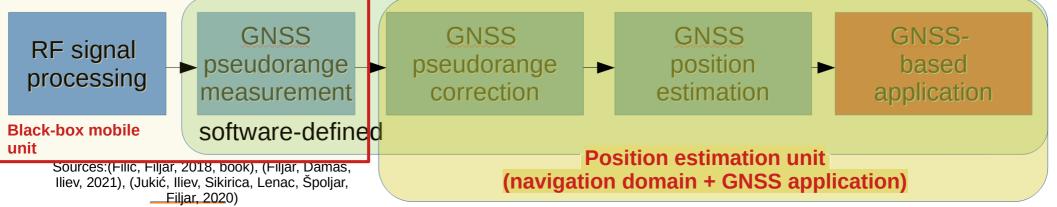
$$d_{3} = \sqrt{(x - x_{s3})^{2} + (y - y_{s3})^{2} + (z - z_{s3})^{2}} + c \cdot d_{T}$$

$$d_{4} = \sqrt{(x - x_{s4})^{2} + (y - y_{s4})^{2} + (z - z_{s4})^{2}} + c \cdot d_{T}$$

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} p(\mathbf{x})^T \boldsymbol{\Sigma}^{-1} p(\mathbf{x})$$


$$\Sigma \stackrel{\text{\tiny def}}{=} COV(v)$$

Sources: (Filić, 2021), and (Filić, Grubišić, Filjar, 2018)


 $\rho := (d_1, d_2, d_3, d_4)^T \quad \mathbf{v} := (v_1, v_2, v_3, v_4)^T$ $\mathbf{x} := (x, y, z, d_T)^T \quad \mathbf{h}(\mathbf{x}) := \begin{bmatrix} [(s_1 - \mathbf{x}_{1:3} + x_4 \cdot c)]] \\ [(s_2 - \mathbf{x}_{1:3} + x_4 \cdot c)]] \\ [(s_3 - \mathbf{x}_{1:3} + x_4 \cdot c)]] \\ [(s_4 - \mathbf{x}_{1:3} + x_4 \cdot c)] \end{bmatrix}$

Conclusion: Mitigation of the GNSS positioning environment effects may be embedded within the GNSS position estimation algorithm, should the statistical properties of the effects are known or identified.

- <u>A proposal for a transparent and distributed GNSS</u> position estimation algorithm based on SDR
- GNSS position estimation detached from traditional GNSS receiver architecture, integrates with the GNSS application
- SDR renders the GNSS position estimation algorithm transparent

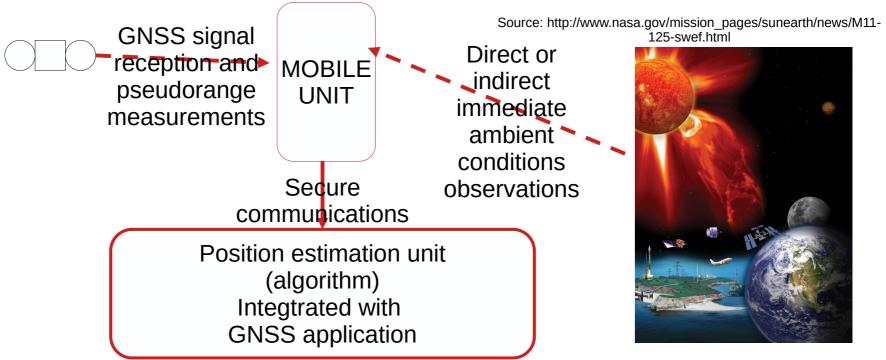
- Positioning environment-adaptive GNSS position estimation algorithm integrated with the GNSS application
- **GNSS application manages autonomously** the QoS (selection of suitable GNSS position estimation method and error correction procedures based on real-time positioning environment conditions, scalable GNSS positioning performance)
- **GNSS operator** remains responsible for the matters of GNSS spectrum and signals
- Positioning to become expandable towards context recognition

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

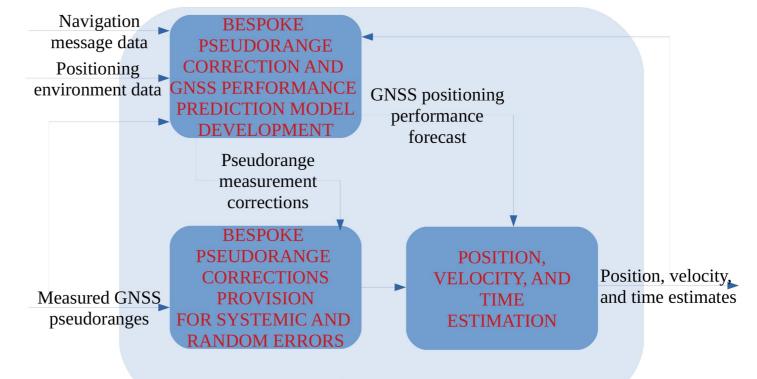
- <u>The quest of GNSS positioning</u> <u>accuracy – not anymore!</u>
- Majority of GNSS applications does
 not require the best absolute
 positioning accuracy possible
- Transition of positioning towards context recognition and localisation
- Re-definition of the positioning accuracy as the GNSS positioning performance indicator → GNSS operator should concern with the GNSS spectrum and GNSS signal integrity maintenance, and not on the infrastructure development and operation

REPORT ON LOCATION-BASED Services User Needs and Requirements

OUTCOME OF THE EUROPEAN GNSS' User consultation platform



Î


Source: (EUSPA, 2019). Available at: https://www.gsc-europa.eu/sites/default/files/sites/all /files/Report_on_User_Needs_and_Requirements_L BS.pdf

- Positioning environment-adaptive GNSS position estimation algorithm
- Mobile unit as pseudorange and positioning environment conditions observations device
- Autonomous adaptation of position estimation algorithm to immediate real-time ambient conditions

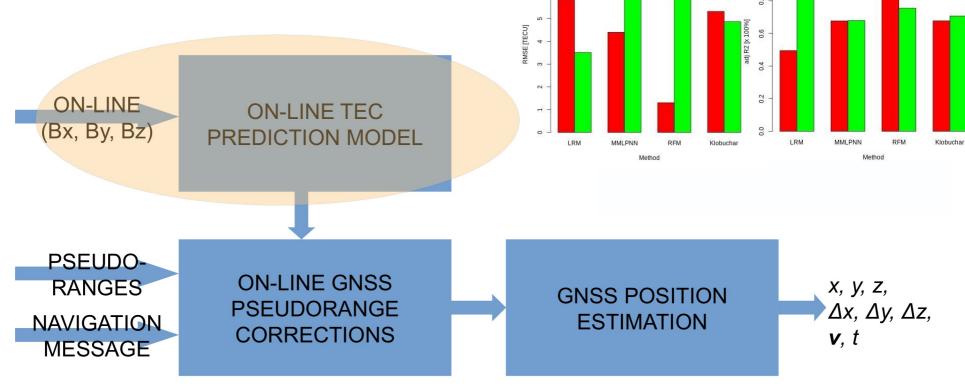
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- <u>Positioning environment-adaptive GNSS position</u> <u>estimation algorithm with mitigation of ionospheric effects</u>
- GNSS Software-Defined Radio empowered with mitigating position estimation algorithms, real-time space weather observations, and statistical learning-based correction models

Sources: (Filjar, Damas, Iliev, 2021), (Filić, Filjar, 2018, book)

NAVIGATION (POSITIONING) DOMAIN

UN/Mongolia Workshop on Applications of GNSS (hybrid) Ulaanbaatar, Mongolia, 25th - 29th October, 2021 Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)


 <u>Case-study of short-term rapidly developing</u> <u>geomagnetic storm in sub-equatorial area (Darwin, NT)</u>

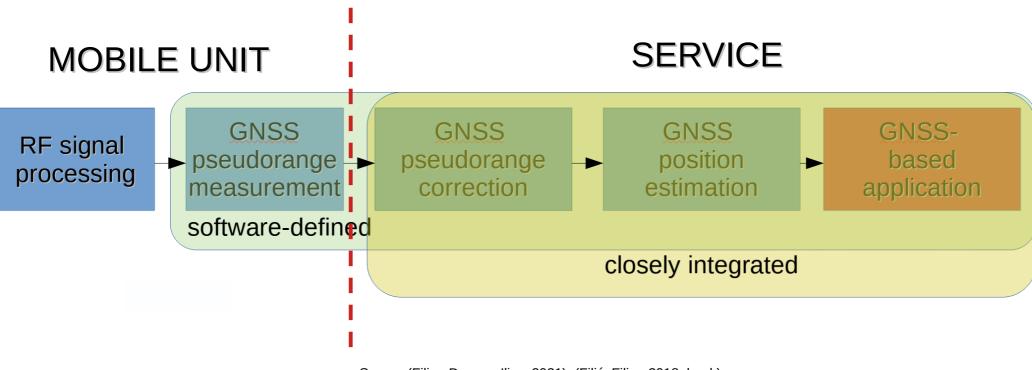
RMSE plot

Model testing data
 Control data on 28 May, 2017

adj R2 plot

LRM ... Linear Regression Model, MMLPNN ... Monotone Multi-layer Perceptron Neural Network Model, RFM ... Random Forest Model, Klobuchar ... standard Klobuchar Model

Sources: (Filjar, Weintrit, Iliev, Malčić, Jukić, Sikirica, 2020), (Filić, Filjar, 2019, URSI AP-RASC)


Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- <u>Enhanced autonomous GNSS position estimation</u> <u>algorithm, with mitigation of ionospheric effects</u>
- Weighted Least Squared GNSS position estimation method
- Weights determined based on statistical properties of the actual geomagnetic/ionospheric conditions observed, using statistical learning-based models $W = diag(k_1, k_2, ..., k_N)$

Sources: (Filić, 2021), (Filić, Grubišić, Filjar, 2018)

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

 <u>Satellite-based position determination ceased to be</u> product- (receiver-) oriented, and becomes a <u>service</u>

Source: (Filjar, Damas, Iliev, 2021), (Filić, Filjar, 2018, book)

- <u>Substance of presentation (I)</u>
- <u>State-of-the-art</u>
- Positioning environment conditions as the cause of GNSS positioning performance degradation at various scales of intensity, occurrence, and duration → traditionally mitigated with costly augmentation infrastructures, and global and generalised correction models
- Traditional approach assumes incorrectly equivalence between GNSS receiver and GNSS positioning process
- GNSS operators cannot control the positioning environment, but requested to provide guarantees of PNT service quality
- Software-defined radio deployment renders GNSS positioning process transparent, in computationally capable technology environment

UN/Mongolia Workshop on Applications of GNSS (hybrid) Ulaanbaatar, Mongolia, 25th - 29th October, 2021 Environment-adaptive GNSS position estimation deployed in distributed GNSS

software-defined radio receiver (R Filjar, Croatia)

- Substance of presentation (II)
- <u>Environment-adaptive GNSS positioning process is</u> proposed
- GNSS positioning process rendered distributed, and considered independent from GNSS receiver architecture, with GNSS position estimation associated to GNSS application
- Immediate real-time positioning environment conditions awareness achieved through sensor information fusion (third-party data, or direct measurements at the positioning spot)
- Statistical learning on GNSS positioning environment conditions data → detection, identification, modelling, correction, learning from direct experience → adaptiveness to the actual environmental conditions
- Position estimation process associated to GNSS application, not GNSS receiver → fitting the process design with GNSS application needs, this revealing GNSS operators from GNSS augmentations, corrections, and PNT guarantees provision

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

• <u>Reference (third-party)</u>

- Morton, Y J, van Diggelen, F, Spilker, Jr, J J, Parkinson, B W. (2021). Position, Navigation, and Timing Technologies in 21st Century (Vols I. and II.). John Wiley & Sons, Inc, Hoboken, New Jersey.
- Sanz Subirana, J, Zornoza, J M J, Hernandez-Pajares, M. (2012). GNSS Data Processing, Vol. I: Fundamentals and Algorithms. ESA. Nordwijk, The Netherlands.
- Zao, Zh, Lu, M. (2021). Next-Generation GNSS Signal Design: Theories, Principles and Technologies. Springer Nature Singapore Pte Ltd. Singapore, Singapore.
- Mendillo, M. (2006). Storms in the ionosphere: patterns and processes for Total Electron Content. Rev Geophys, 44, RG4001, doi:10.1029/2005RG000193
- Demjanov, V V, Yasyukevich, Y V. (2021). Space weather: risk factors for Global Navigation Satellite Systems. Solar-Terrestrial Physics. 2021. Vol. 7. Iss. 2. P. 28–47. doi: 10.12737/stp-72202104
- GSA. (2019). GNSS user needs and requirements library. EUSPA (former GSA). Prague, Czechia. Available at: https://www.euspa.europa.eu/euspace-applications/euspace-users/user-needs-and-requirements
- Efron, B, and Hastie, T. (2016). Computer Age Statistical Inference: Algorithms, Evidence, and Data Science. Cambridge University Press. Cambridge, UK. Available at: https://web.stanford.edu/~hastie/CASI/

- <u>Reference (books)</u>
- Filić, M. (2021). Mathematics of single-point GNSS position estimation: Mathematical foundations of satellite-based positioning. In publication.
- Filić, M, Filjar, R. (2018). Forecasting model of space weatherdriven GNSS positioning performance. Lambert Academic Publishing. Riga, Latvia. ISBN 978-613-9-90118-0.

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

• Reference (scientific journals)

- Špoljar, D, Jukić, O, Sikirica, N, Lenac, K, Filjar, R. (2021). Modelling GPS Positioning Performance in Northwest Passage during Extreme Space Weather Conditions. TransNav, 15(1), 165-169. doi:10.12716/1001.15.01.16
- Lenac, K, Filjar, R. (2021). Recurrence Plot Analysis of GPS Ionospheric Delay Time Series in Extreme Ionospheric Conditions. Computers & Geoscience, 147, No. 104613 (11 pages). doi: https://doi.org/10.1016/j.cageo.2020.104613
- Filić, M, Filjar, R. (2019). GNSS positioning error change-point detection in GNSS positioning performance modelling. TransNav, 13(3), 575-579. doi: 10.12716/1001.13.03.12
- Filić, M, Filjar, R. (2019). A Considerable Level of Correlation Between SID-Monitoring Time Series and GPS-Derived TEC Observations Taken During Development of a Massive Ionospheric Storm. URSI Radio Sci Bul, 2019(370), 27-33. doi: 10.23919/URSIRSB.2019.8956141
- Filić, M, Filjar, R. (2018). A South Pacific Cyclone-Caused GPS Positioning Error and Its Effects on Remote Island Communities. TransNav, 12(4), 663-670. doi: 10.12716/1001.12.04.03
- Rumora, I, Sikirica, N, Filjar, R. (2018). An Experimental Identification of Multipath Effect in GPS Positioning Error. TransNav, 12(1), 29-32. doi: 10.12716/1001.12.01.02
- Filic, M, Filjar, R, Ruotsalainen, L. (2016). An SDR-Based Study of Multi-GNSS Positioning Performance During Fast-Developing Space Weather Storm. TransNav, 10(3), 395-400. doi: 10.12716/1001.10.03.03

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

• <u>Reference (scientific journals)</u>

- Filjar, R., S. Kos, S. Krajnovic. (2013). Dst index as a potential indicator of approaching GNSS performance deterioration. Journal of Navigation, 66(1), 149-160. Cambridge University Press. doi:10.1017/S037346331200029X
- Filjar, R., T. Kos, S. Kos. (2009). Klobuchar-Like Local Model of Quiet Space Weather GPS lonospheric Delay for Northern Adriatic. Journal of Navigation, 62, 543-554. doi:10.1017/S0373463309005281
- Filjar, R. (2008). A Study of Direct Severe Space Weather Effects on GPS Ionospheric Delay. Journal of Navigation, 61, 115-128. doi:10.1017/S0373463307004420
- Filjar, R, Huljenić, D, and Dešić, S. (2002). Distributed Positioning: A Network-Supported Method for Satellite Positioning Performance. Journal of Navigation, 55, 477-484. doi: 10.1017/S0373463302001996

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

• <u>Reference (conference papers)</u>

- Sikirica, N, Dimc, F, Jukić, O, Iliev, T B, Špoljar, D, Filjar, R. (2021). A Risk Assessment of Geomagnetic Conditions Impact on GPS Positioning Accuracy Degradation in Tropical Regions Using Dst Index. Proc ION ITM 2021, 606 - 615. San Diego, CA. doi: 10.33012/2021.17852
- Filjar, R, Damas, M C, Iliev, T B. (2020). Resilient Satellite Navigation Empowers Modern Science, Economy, and Society. CIEES 2020. IOP Conf. Ser: Mater Sci Eng 1032, 012001 (10 pages). Borovets, Bulgaria. doi:10.1088/1757-899X/1032/1/012001
- Jukić, O, Iliev, T B, Sikirica, N, Lenac, K, Špoljar, D, Filjar, R. (2020). A method for GNSS positioning performance assessment for location- based services. Proc of 28th Telecommunications Forum TELFOR 2020 (4 pages). Belgrade, Serbia. doi: 10.1109/TELFOR51502.2020.9306548
- Filjar, R, Weintrit, A, Iliev, T, Malčić, G, Jukić, O, Sikirica, N. (2020). Predictive Model of Total Electron Content during Moderately Disturbed Geomagnetic Conditions for GNSS Positioning Performance Improvement. Proc FUSION2020, 256-262. Pretoria, South Africa. doi: https://doi.org/10.23919/FUSION45008.2020.9190264
- Filić, M, Filjar, R. (2019). On correlation between SID monitor and GPS-derived TEC observations during a massive ionospheric storm development. Student Paper Competition Award at URSI AP-RASC 2019 Meeting. New Delhi, India. doi: 10.23919/URSIAP-RASC.2019.8738664
- Filjar, R. (2019). On suitability of massive GNSS pseudorange data for GNSS positioning performance studies. Proc of 12th Baška GNSS Conference, 7 ... 27. Baška, Krk Island, Croatia. Available at: https://bit.ly/2T1pOeA

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

• <u>Reference (conference papers)</u>

- Filić, M, Filjar, R. (2018). Modelling the Relation between GNSS Positioning Performance Degradation, and Space Weather and Ionospheric Conditions using RReliefF Features Selection. Proc of 31st International Technical Meeting ION GNSS+ 2018, 1999-2006. Miami, FL. Doi: https://doi.org/10.33012/2018.16016
- Filić, M, Filjar, R. (2018). Smartphone GNSS positioning performance improvements through utilisation of Google Location API. Proc of 41 st International Convention MIPRO/CTI, 507-510. Opatija, Croatia. doi: 10.23919/MIPRO.2018.8400087
- Filić, M, Grubišić, L, Filjar, R. (2018). Improvement of standard GPS position estimation algorithm through utilization of Weighted Least-Square approach. Proc of 11th Annual Baška GNSS Conference, 7-19. Baška, Krk Island, Croatia. Available at: https://www.pfri.uniri.hr/web/hr/dokumenti/zbornici-gnss/2018-GNSS-11.pdf
- Filić, M, Weng, J, Filjar, R. (2018). A comparative study of forecasting methods for space weathercaused GNSS positioning performance degradation. Proc of 11th Annual Baška GNSS Conference, 31-45. Baška, Krk Island, Croatia. Available: at: https://www.pfri.uniri.hr/web/hr/dokumenti/zbornici-gnss/2018-GNSS-11.pdf
- Filjar, R, Filić, M, Mirmakhmudov, E. (2018). Categorisation of space weather and GNSS positioning quality indicators for estimation of GNSS positioning quality degradation. Proc of 11th Annual Baška GNSS Conference, 63-75. Baška, Krk Island, Croatia. Available: https://www.pfri.uniri.hr/web/hr/dokumenti/zbornici-gnss/2018-GNSS-11.pdf

UN/Mongolia Workshop on Applications of GNSS (hybrid) Ulaanbaatar, Mongolia, 25th - 29th October, 2021 Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

APPRECIATE YOUR ATTENTION.

MAY YOU STAY WELL AND SAFE!

AN INVITATION TO

BAŠKA SPATIAL INFORMATION FUSION (SIF) CONFERENCE Baška, Krk Island, Croatia Early October, 2022 - details in January 2022

Prof Renato Filjar, PhD FRIN MION Faculty of Engineering, University of Rijeka, Croatia, and Krapina University of Applied Sciences, Croatia E-mail: renato.filjar@gmail.com