

FPGA IMPLEMENTATION OF A NAVIC DISCIPLINED 10MHZ REFERENCE FOR SATCOM NETWORKS

Kriti Khatri

Delhi Earth Station, Space Applications Centre Indian Space Research Organization kritikhatri@sac.isro.gov.in

Typical Earth Station

Earth Station Synchronization Using NavIC 1 PPS Signal

Clock Disciplining Circuit

The Frequency Control Word (FCW) controls the output frequency of the DDS:

 $f_{DDS} = \frac{FCW}{2^{M}} f_{s}$ Where, M = phase width, 32bit f_{s} = Source Frequency, 100 MHz f_{DDS} = Required frequency, 10MHz

Design Options

	Analog PLL	Discrete DAC + FPGA	DDS
Spectral Performance	High	Medium-High	Medium
Power Requirements	High	High	Low
Digital Frequency Tuning	No	Yes	Yes
Tuning Response Time	High	Low	Low
Waveform Flexibility	Low	Medium	High
Remarks	Difficult to Tune	Ability to Tune	Easy to Tune

The option of DAC interfaced with FPGA was considered

Hardware Implementation

- NavIC Receiver (single band, 11 channel, SPS ASIC Rx)
- Kintex KC705 FPGA
- FMC-150 daughter card (dual channel, 16bit D/A)
- 100MHz OCXO

Specifications of NavIC disciplined 10MHz Reference

NavIC Receiver			
Frequency Band	L5		
1PPS Accuracy	60 ns		
TTFF	\approx 120 sec (Cold Start)		
Update Rate	1 Hz		
OCXO Timebase			
Oscillator Type	Oven controlled, SC-cut Crystal		
Temperature stability	\pm 30 x 10 ⁻⁹		
Ageing	± 2 x 10 ⁻⁹ per day		
Warm up time	3 min to reach within \pm 0.01ppm		
10 MHz Output			
Amplitude	+2.5 dBm		
Harmonic Level	-60 dBc		
Frequency Stability @	Short term stability (1 sec): 2.1 x 10 ⁻¹⁰		
25 deg C	Long term stability (10,000 sec): 1.7×10^{-10}		
Phase Noise			
10 Hz	-98.15 dBc/Hz		
100 Hz	-101.64 dBc/Hz		
1 KHz	-106.74 dBc/Hz 🌱		
100 KHz	-108.14 dBc/Hz इसरो		

Phase Noise of 10MHz Signal vs Industry standards

Carrier	IESS 308/309	Disciplined
Frequency	maximum allowable	10MHz Signal
Offset	phase noise	phase noise
10 Hz	-30 dBc/Hz	-98.15 dBc/Hz
100 Hz	-60 dBc/Hz	-101.64 dBc/Hz
1 KHz	-70 dBc/Hz	-106.74 dBc/Hz
100 KHz	-90 dBc/Hz	-108.14 dBc/Hz

Synchronized NavIC and Internal 1PPS

Spectrum of 10 MHz Analog Output

10 MHz Analog Output

Frequency Stability

डसरी डिल्व

Conclusion

- NavIC 1 PPS signal was used to discipline a 100MHz OCXO to generate a reference frequency output of 10MHz.
- The disciplined output has a short term (1 sec) stability of 2.1 x 10⁻¹⁰ and a long term (10,000 sec) stability of 1.7 x 10⁻¹⁰ with phase noise better than Industry-standards.
- The power consumption of the hardware in steady state is 5.71 W.
- Developed an indigenous system guaranteed to be available to Indian users.

