DEM based Flood Area Mapping Technique for Real Time Flood Early Warning Systems

Manavalan.R¹, Rao Y.S², Mohan B Krishna², Subrata .C¹, Mangala², Sarat Chandara Babu²

Centre for Development of Advanced Computing¹, Bangalore, India Centre of Studies in Resources Engineering², Indian Institute of Technology, Bombay

United Nations-ISRO India Workshop

on Use of Earth Observation Data in Disaster Management and Risk Reduction: Sharing the Asian Experience

Outline:-

- 1. Introduction
- 2. Objectives
- 3. Motivation and Components of a Flood Early Warning System
- 4. Study Area and Data set used
- 5. Proposed Method of Approach:
 - DEM based Flood Area Mapping
 - Demonstration through Oct-2013, Nov-2013 flood events of AP, India
 - Validation
- 6. Conclusion

Natural Disasters result in <u>loss of</u> human life and property

• Global Economy suffers a <u>colossal loss</u> due to <u>inability to prevent</u> natural and man-made disasters.

Among natural disasters world over 'Flood' is No-1 is divesting the hotspot both in turn of human loss and economic loss than any other natural disasters

Source: EM-DAT (25th January 2016) : The OFDA/CRED - International Disaster Database www.emdat.be Université catholique de Louvain Brussels - Belgium

Centre for Research on the Epidemiology of Disasters (CRED), IRSS Université catholique de Louvain, Belgium Tel. +32 27643327 contact@emdat.be www.cred.be

Estimated economic damages reported by Flood related disasters of India from 1993 to 2015 (in US\$ X 1000 billion ranging from 20-180)

Economic Loss

Approx., hence with noise/error

Role of effective Early Warning Systems (W.r.t Human loss)

Role of effective Early Warning Systems (W.r.t Human loss)

Role of effective Early Warning Systems (W.r.t Human loss)

Components of SAR based Flood Early Warning System and Motivation

Components of SAR based Flood Early Warning System and Motivation

....is there any method to map the inundated pixels with least manual intervention?

- 1. To develop a RADAR (SAR) image analysis technique that can map the inundated information with least manual intervention and with maximum possible automation.
- 2. Evaluation of proposed model with different SAR data sets of different flood events, field database.

• Deriving the precise backscattering range of fully inundated partially inundated and non-flooded regions and its analysis.

	Flood due to rain during	Flood due to Helen cyclone			
	October 2013	November 2013			
SLC data	RADARSAT-2	RADARSAT-2			
Duration of downpour	22-27 th Oct. 2013	19 – 23 Nov. 2013			
Acquisition date	28 October, 2013	24 November, 2013			
Beam Mode	ScanSAR Wide				
Swath Width (km)	500				
Pass	Ascending	Descending			
Image Incidence angle	20 ° to 49 °	33 ° to 49 °			
Polarization	HH				
Multilook	2:4				
Pixel spacing (m)	50				

- > Step1: SLC data Calibration and extracting land region of the image.
- Step2: Terrain Bifurcation and extraction of region of interest
- > Step3: Bifurcating the Plain regions of image to extract the water layer
- > Step 4: Classification of Water Pixels
- Dissemination of Critical information

Step-1 SLC data Calibration and extracting the land region of the image

RDTC Algorithm

- Calibration (using metadata of given SLC)
- Image formation
- Terrain Correction (using DEM)
- Mask of sea surface &
- dB image formation

Step-2 Terrain Bifurcation and extraction of region of interest

17⁰ 36[!] 47^{!!} N 78⁰ 05[!] 48^{!!} E

SRTM DEM of the disaster region

17º 36[!] 47 ^{!!} N 81⁰ 52[!] 26 ^{!!} E

N

410m

Data courtesy: SRTM – NASA Science Team

14⁰ 54[!] 26 ^{!!} N 81⁰ 52[!] 26 ^{!!} E

0

14⁰ 54[!] 26^{!!} N 78⁰ 05[!] 48[#] E

Step-2: Bifurcated DEM

N

410m

168m

 $\mathbf{0}$

14º 54! 26 <mark>" N -</mark> 78º 05! 48 " E Plain regions (1–168m) Elevated regions (169 – 410m)

14⁰ 54[!] 26 ^{!!} N 81⁰ 52[!] 26 ^{!!} E

05¹ 48¹¹ E

78⁰

Masking of Elevated Regions

17º 36¹ 47 ^{!!} N 81º 52[!] 26 ^{!!} E

14⁰ 54[!] 26^{!!} N 81⁰ 52[!] 26^{!!} E

17⁰ 36[!] 47^{!!} N 78⁰ 05[!] 48^{!!} E

Output of Step-2: Plain Regions of the SAR image

17⁰ 36[!] 47^{!!} N 81⁰ 52[!] 26^{!!} E

Step3 Bifurcating the Plain regions of image to extract the 'water pixels/water layer'

ISODATA clustering

17⁰ 36[!] 47^{!!} N 78⁰ 05[!] 48^{!!} E

Plain Regions of the SAR image

17⁰ 36[!] 47^{!!} N 81⁰ 52[!] 26^{!!} E

17⁰ 36[!] 47^{!!} N 78⁰ 05[!] 48^{!!} E

Step-3: Bifurcating the Plain regions of image to map the 'water pixels/water layer'

17⁰ 36[!] 47^{!!} N 81⁰ 52[!] 26^{!!} E

N

Non Flooded Regions Water Pixels/Water Layer

14⁰ 54[!] 26^{!!} N 81⁰ 52[!] 26^{!!} E

14⁰ 54[!] 26^{!!} N 78⁰ 05[!] 48^{!!} E

Output of Step-4: Classification of Water Pixels

17º 36[!] 47 ^{!!} N 81º 52[!] 26 ^{!!} E

N

Fully Inundated Regions

Partially Inundated Regions

14⁰ 54[!] 26 ^{!!} N 81⁰ 52[!] 26 ^{!!} E

17⁰ 36[!] 47^{!!} N 78⁰ 05[!] 48^{!!} E

78° 05¹

Integration of Step-3 & Step-4 Results

17⁰ 36[!] 47 ^{!!} N 81⁰ 52[!] 26 ^{!!} E

N

Fully Inundated RegionsPartially Inundated RegionsNon Flooded Regions

14⁰ 54[!] 26^{!!} N 81⁰ 52[!] 26^{!!} E

Information dissemination during a real time scenario - WMS Setup

 \geq To support the maximum possible automation process the clustering parameters is hardcoded throughout the model execution.

 \triangleright Due to sequential implementation of image clustering and focusing the next level operation at each stage the frequency of pixels has been gradually reduced as well as the backscattering range of object of interest has been narrowed down.

 \succ All these increases the accuracy of the classification.

Field database information collected from ISRO-Bhuvan is used

Courtesy: DMS Cell of NRSC, Hyderabad, and Bhuvan Portal, ISRO

LAT	LONG	NRSC Field Record	DEM-SAR-FA-Classification	DATE	DISTRICT	MANDAL	CROP	CROPSTAGE	STATUS
15.953800	80.504100	Partially Inundated	do	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Crop Partially submerged and damaged
16.000220	80.437200	Fully Inundated	Uninundated	31/10/2013	Guntur	Kakumanu	Rice	Maturity Level	Fully damaged
15.817100	80.387300	Partially Inundated	do	31/10/2013	Prakasam	Vetapalem	Rice	Transplanting 15-20 days	Crop Partially submerged and damaged
15.774800	80.174900	Uninundated	do	31/10/2013	Prakasam	Inkollu	Cotton	Ball formation	Good Crop Cover but flowering damaged due to cyclor
15.982900	80.454200	Fully Inundated	Partially Inundated	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Fully damaged
15.985400	80.508000	Uninundated	do	31/10/2013	Guntur	Bapatla	Rice	LateTransplantion	Good Crop Cover still Water in the field
15.958500	80.438900	Uninundated	do	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Good Crop Cover still Water in the field
15.994000	80.487200	Partially Inundated	do	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Panicle Damage
15.776800	80.175100	Uninundated	do	31/10/2013	Prakasam	Inkollu	Cotton	Ball formation	Crop damaged severly
15.874900	80.330700	Fully Inundated	do	31/10/2013	Prakasam	Karamchedu	Rice	Transplanting 15-20 days	Crop Fully submerged and damaged
15.934500	80.492800	Partially Inundated	do	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Crop Partially submerged and damaged
15.931600	80.449800	Fully Inundated	do	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Crop Fully submerged and damaged
15.926900	80.471000	Fully Inundated	de	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Crop Fully submerged and damaged
15.873700	80.297200	Fully Inundated	Partially Inundated	31/10/2013	Prakasam	Karamchedu	Rice	Maturity Level	Fully damaged
15.850000	80.348200	Fully Inundated	du	31/10/2013	Prakasam	Chirala	Rice	Maturity Level	Crop Fully submerged and damaged
15.938800	80.444300	Fully Inundated	do	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Crop Fully and Partiallysubmerged and damaged
15.922200	80.473000	Fully Inundated	do	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Crop Fully submerged and damaged
15.940300	80.443900	Fully Inundated	do	31/10/2013	Guntur	Bapatla	Rice	Maturity Level	Crop Fully and Partiallysubmerged and damaged
15.844300	80.353300	Fully Inundated	üu	31/10/2013	Prakasam	Chirala	Rice	Maturity Level	Crop Fully submerged and damaged
15.867500	80.336000	Partially Inundated	Fully Inundated	31/10/2013	Prakasam	Karamchedu	Rice	Transplanting 15-20 days	Crop Fully and Partiallysubmerged and damaged

Study of Helen Cyclonic Flood of November-2013

80⁰ 40' 57"E 20⁰ 06' 39" N

RADARSAT-2 image of Helen Cyclonic Flood Nov., 2013

41"

80° 40' 57"E

 15^{0}

Machilipatinam (Helen Landfall Region) Guntur District
Krishna District
West Godavari District
Helen Image Study Area

SDAR

Data courtesy: CSA under SOAR Project-5171

15⁰ 40' 41''N 85⁰ 10' 28''E 80⁰ 40' 57"E 20⁰ 06' 39" N

15⁰

Helen Flood Area Mapping using the proposed DEM based SAR Image Flood Area Mapping Techniques

Cyclone Landfall **Moderate Rainfall** Date of SAR Acquisition **Order Placed on**

: Helen

- : 22 NOV 2013, 6pm Machilipatnam, AP, India
- : From 17 to 21, NOV. 2013
- Intense Rainfall and Flood : From 22 to 23 NOV. 2013
- Field Trip to Machilipatnam : From 24- 27 NOV, 2013
 - : 24 NOV 2013, RADARSAT-2, HH Pol.. Data
 - : 22 NOV, 2013 (RADARSAT SOAR)

Analyzing the integrated results (Integration of processed result and Field database)

💯 Attributes for helen-fd.shp

File Edit View Help

🖻 🛍 \varTheta

ecord	ID	LON	LAT	LOCATIONNA	MANDAL	DISTRICT	INUNDATION	
1	1	81.138309	19.285264	Palletummalapalem	Machilipatnam	Krishna	Fully Inundated	Aquaculture, Salt Pans
2	2	81.056657	19.029867	Kavutaram	Gudlavalleru	Krishna	Partially Inundated	Partialy damaged Agricultural fields
3	3	81.056657	19.032584	SeriDintacurru	Gudivada	Krishna	Fully Inundated	Canals and Aquaculture Fields
4	4	80.947788	18.945640	Peda Parupudi	Gudivada	Krishna	Uninundated	Fully damaged crops due to rain and Cyclonic
5	5	80.870888	18.979358	Ryves-Vuyyuru canals	Gudivada	Krishna	Fully Inundated	Fully damaged crops due to rain and Cyclonic
6	6	80.858439	18.994546	Vuyyuru	Vuyyuru	Krishna	Uninundated	Uninundated but Crops are damaged due to C
7	7	81.123196	19.174219	Machilipatnam	Machilipatnam	Krishna	Partially Inundated	Urban nagar, colonies, office premises are parl
8	8	81.119614	19.156337	MachilipatnamArisepalli	Machilipatnam	Krishna	Partially Inundated	Similar to Wet Land environment
9	9	81.147081	19.109248	Pedana	Pedana	Krishna	Partially Inundated	Damage of Crops
10	10	81.031839	19.213560	Mallavolu	Guduru	Krishna	Partially Inundated	Damage of Crops
11	11	80.916597	19.136667	Movva	Movva	Krishna	Partially Inundated	Partial damage of Crops
12	12	80.917194	19.336350	Avanigadda	Avanigadda	Krishna	Partially Inundated	Complete damage of Crops
13	13	80.958394	19.341118	Machavaram	Challapalle	Krishna	Partially Inundated	Complete damage of Crops
14	14	80.971531	19.329197	Kottapalem	Challapalle	Krishna	Partially Inundated	Complete damage of Crops
15	15	80.927942	19.297605	Mapidevi	Mapidevi	Krishna	Partially Inundated	Fully damaged crops due to rain and Cyclonic
16	16	80.920179	19.415627	Nagayalanka	Nagayalanka	Krishna	Partially Inundated	Complete damage of Crops
17	17	80.903460	19.501461	Etimoga	Nagayalanka	Krishna	Fully Inundated	Complete damage of Crops
18	18	80.849720	19.484771	Mallapalle-Ganganipale	Repalle	Guntur Dis	Fully Inundated	Aquaculture Fields
	III							>

Minimize

Helen: Processed result and Field database study at ...location

Resultson Topo map..it near to Vuyyuru

Cross Validating with Field Photographs

Backscattering Analysis

Flood due to	Oct.2013 Flood	Nov, 2013 Helen Cyclonic			
	due to rain	Food			
Input SAR data	C- band, RADARSAT-2, HH				
Overall Water Inundated Regions	-8 to -35	-11 to -35			
Fully Inundated Regions	-15 to -35	-17 to -35			
Partially Inundated Regions	-8 to -14	-11 to -16			
Non Flooded Regions	-7 to -1	-10 to -1			

Pixel Frequency

Backscattering Range of Case Studies

➤ The 'SAR image based Flood Area Mapping technique' has been demonstrated with the help of RADARSAT-2 data of Oct.2013 and Nov.2013 flood event of Andhra Pradesh state, India.

 \succ The proposed technique can differentiate and map the fully inundated, partially inundated and non-flooded pixels of SAR image without the use of any multi-layer GIS techniques.

➤ The derived results has been validated with the help of Field database (NRSC-Bhuvan for Oct.2013 and Real time field DB for Nov.2013)

 \geq Able to define the backscattering range of end results without overlapping with other classes than any other existing methods.

> The suggested techniques will make available the end results within shortest possible time without much manual intervention.

Fully Inundated Regions

Partially Inundated Regions

➤ The 'SAR image based Flood Area Mapping technique' has been demonstrated with the help of RADARSAT-2 data of Oct.2013 and Nov.2013 flood event of Andhra Pradesh state, India.

 \succ The proposed technique can differentiate and map the fully inundated, partially inundated and non-flooded pixels of SAR image without the use of any multi-layer GIS techniques.

➤ The derived results has been validated with the help of Field database (NRSC-Bhuvan for Oct.2013 and Real time field DB for Nov.2013)

 \geq Able to define the backscattering range of end results without overlapping with other classes than any other existing methods.

> The suggested techniques will make available the end results within shortest possible time without much manual intervention.

➢ Partially inundated and fully inundated regions of known and unknown disaster region can be identified with least manual intervention.

Logically eliminating elevated hilly regions and shadow pixels

> Enhances the accuracy ...due to adopting sequence of image extraction and subsequent processing approach

➢ With all the above, supporting the disaster mitigation operations through shortest possible mapping process.

Acknowledgement

RE

rmanavalan@cdac.in saimanaindia@gmail.com