

RTK: Where Every GNSS Matters

Presenter: Sergey Averin, Mathematical Team Leader, Topcon Technology Center, Moscow, Russia

What Is RTK?

RTK – Real Time Kinematics:

A methodology to provide real time positioning with an accuracy at centimeter level.

RTK Specifics:

- A need for static reference station called 'base'
- A need for data link between base and a rover
- Carrier phase ambiguity resolution (AR) at rover side is a must in order to achieve centimeter level accuracy

When carrier phase ambiguities are resolved – output solution has status 'fixed' and accuracy of centimeter level

How RTK Is Organized

RTK Is Not Always Reliable by 100%

RTK Is Successful If:

- Percentage of 'fixed' solutions is close to 100%
- RMS positioning errors are on centimeter level
- Percentage of outliers (wrong fixes) is close to 0

Η ΤΟΡΟΟΛ

How To Make RTK Reliable by 100%?

- To keep baseline short not always achievable
- To keep away from signal obstructions and interferences not always achievable
- To have reliable data link between base and rover not always achievable
- To track and use as many satellite measurements as possible – achievable with receiver design

Satellite Signals Available Today for Use in RTK

- GPS L1 + GPS L2(L2C): 30-31 NSV in operation
- GLONASS L1 + GLONASS L2 (L2C): 24-25 NSV in operation
- Beidou B1 + Beidou B2: 14 NSV in operation
- SBAS L1: WAAS(3), GAGAN(2), MSAS(2), EGNOS(2)
- QZSS L1 + QZSS L2: 1 NSV in operation

Test Results for Open Sky: Moscow, Reset Every 5 Min

Base

- Under open sky all results are good
- Adding BDS to GPS+GLO does not help, as BDS geometry in Moscow is not favorable
- GPS-only and GLO-only are of the same satisfactory quality, but slightly worse than GPS+GLO

Mode	Stat.	Fix, [%]	RMS, mm		
			Ν	Е	Н
GPS/GLO/BDS	79473	100	1.6	1.2	3.0
GPS/GLO	79473	100	1.7	1.2	3.1
GPS/BDS	79473	99.92	2.5	1.7	4.5
GPS Only	79473	97.45	2.8	1.7	4.7
GLO/BDS	79473	99.95	2.1	2.0	4.1
GLO Only	79473	99.77	2.3	2.0	4.3

Test Results for Challenging Conditions: Moscow, Reset Every 5 Min

Base and rover

- The best results are achieved for GPS+GLO combination
- Adding BDS to GPS+GLO does not help, as BDS geometry in Moscow is not favorable
- GPS Only and GLONASS Only results are of poor quality

Mode	Stat.	Fix, [%]	RMS, mm			
			Ν	E	Н	
GPS/GLO/BDS	95697	97.75	6.2	5.7	13.3	
GPS/GLO	95697	98.06	6.2	5.8	13.2	
GPS/BDS	95697	85.05	8.1	6.4	15.2	
GPS Only	95696	71.89	7.8	6.4	14.0	
GLO/BDS	95697	58.98	9.9	10.3	24.4	
GLO Only	95697	38.72	11.3	9.3	21.0	

Test Results for Challenging Conditions: Singapore, Urban Canyon

Rover

- The best results are achieved for GPS+GLO+BDS combination
- GPS Only, GLONASS Only, and even GPS+GLO results are unsatisfactory

Mode	Stat.	Fix,	RMS, mm		
		[%]	Ν	E	Н
GPS/GLO/BDS	3454	93,17	36,5	11,7	25,9
GPS/GLO	3454	0,58			
GPS/BDS	3454	92,96	38,0	10,5	28,4
GPS Only	3454	0			
GLO/BDS	3454	64,5	35,9	6,8	25,6
GLO Only	3454	0			

Test Results for Challenging Conditions: Singapore, Tree Canopy

Rover

- The best results are achieved for GPS
 +GLO+BDS combination
- GPS Only, GLONASS Only, and even GPS+GLO results are unsatisfactory

Mode	Stat.	Fix, [%]	RMS, mm			
			Ν	E	Н	
GPS/GLO/BDS	3454	92,27	33,2	12,6	23,8	
GPS/GLO	3454	4,88			-	
GPS/BDS	3454	91,16	35,8	15,3	27,1	
GPS Only	3454	1,20			-	
GLO/BDS	3454	77,15	38,6	14,8	28,5	
GLO Only	3454	0,56	<u></u>			

Η ΤΟΡΟΟΛ

- In favorable conditions (open sky, no interferences) every GNSS alone can provide reliable RTK solution (GPS, or GLONASS, or BDS).
- In difficult conditions none of the GNSS alone can provide any reliability; only combined use of all available GNSS signals is capable to provide needed quality of RTK results.
- Adding GLONASS to GPS is crucial for providing high quality RTK solutions all over the World.
- In Eastern regions of the World the use of BDS signals in addition to signals of GPS and GLONASS makes RTK even more efficient.
- With expected further populating the BDS constellation with MEO (Medium Earth Orbit) satellites, RTK performance should improve globally (starting with 2015).
- The future in high precision RTK applications belongs to multisystem receivers: GPS+GLONASS+Beidou