Moscow design bureau "Compas" JSC

Methods of improving efficiency of interference suppression GNSS anti-jam receivers.

ICG-9 WG-B, Prague, Czech Republic, 2014

Sokolov I.M., Kalmykov P.V.

Nullformer

 $\boldsymbol{w}_{opt} = \boldsymbol{R}_{ZZ}^{-1} \boldsymbol{r}_{ZE}$ $\boldsymbol{R}_{ZZ} = \left\langle \boldsymbol{Z}^{\mathrm{H}} \boldsymbol{Z} \right\rangle$ $\boldsymbol{r}_{ZE} = \left\langle \boldsymbol{Z}^{\mathrm{H}} \boldsymbol{E} \right\rangle$

Output signal:

 $Y = E - Zw_{opt}$

 $Z = (Z_1, Z_2, ..., Z_N)$

E – reference channel signal $Z_i - i$ -th adjusting channel

DoA Estimation by Capon method

$$\boldsymbol{R}_{XX} = \langle \boldsymbol{X}^{\mathrm{H}} \boldsymbol{X} \rangle \quad \boldsymbol{X} = (\boldsymbol{E}, \boldsymbol{Z})$$
$$\boldsymbol{P}_{CAP}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{\boldsymbol{a}(\boldsymbol{\theta}, \boldsymbol{\phi})^{\mathrm{H}} \boldsymbol{R}_{XX}^{-1} \boldsymbol{a}(\boldsymbol{\theta}, \boldsymbol{\phi})}$$

EVD interference remover

 $R_{XX} = UAU^{H}$ $U = (\dot{U}, \ddot{U})$ $Y = X \cdot (\dot{U}, \ddot{U}) = (\dot{Y}, \ddot{Y})$ $(\dot{Y}, \ddot{Y}) \cdot \begin{pmatrix} \dot{U}^{H} \\ \ddot{U}^{H} \end{pmatrix} = \dot{X} + \ddot{X}$ $A = \operatorname{diag}(\lambda_{1}, \lambda_{2}, ..., \lambda_{N}) \qquad \lambda_{1} \le \lambda_{2} \le ... \le \lambda_{N}$

Interference-free subspace: $\dot{U} = (u_1, ..., u_{N-J})$

Interference subspace: $U = (u_{N-J+1}, ..., u_N)$

 \dot{X} - interference-free signal X - interference signal

 $\lambda_{th} = v_0 + P_s$

 P_s – maximum power of GNSS signals

DoA Estimation by MUSIC

$$P_{MUS}(\theta,\phi) = \frac{1}{\boldsymbol{a}(\theta,\phi)^{\mathrm{H}} \dot{\boldsymbol{U}} \dot{\boldsymbol{U}}^{\mathrm{H}} \boldsymbol{a}(\theta,\phi)}$$

Factors affecting the efficiency of anti-jam devices base on spatial selection signals

- Dynamic range ADC
- Channel non-identity
- Multipath interference

Dynamic range (cutoff)

Interference is Gaussian noise: $C \downarrow max = 20 \log 10 (2 \uparrow D / 3)$

Channel identity (calibration)

Channel identity (narrowband processing for broadband signals)

$$\begin{split} \Psi(\tau) & * H \downarrow 1 + \Psi(\tau) * H \downarrow 2 + \dots \\ & + \Psi(\tau) * H \downarrow P = \\ \Psi(\tau) & * \sum p = 1 \uparrow P \implies H \downarrow p \Rightarrow \end{split}$$

Increase of computational affinity of matrix inversion by systolic array

Increase of computational affinity of EVD

PE- Processor Element

Anti-jam receiver

GNSS Systems	Glonass/GPS
Antenna	4-element CRPA
Tracking and navigation channels	48
Position accuracy (1σ)	V: 3 m H: 5 m
Velocity (1σ)	0,05 m/s
Temperature range	from -60 to +85°C
Size/Volume	115x115x50 mm
Power	14 W
Weight	1,3 kg

Conclusions:

- Describes the basic methods of building GNSS anti-jam receiver;
- Basic factors affecting anti-jam technology are considered, such as:
 - dynamic range
 - channel non-identity
 - Multipath interference
- Basic ways of suppression of these factors are reviewed;
- Ability to use systolic arrays for improving computational efficiency, including for the purposes:
 - QR-decomposition
 - EVD-decomposition
- All reviewed solutions are implemented in serial GNSS anti-jam receivers of MDB «Compas».

Thank for your attention

Moscow Design Bureau "Compas"

Russian Federation, Moscow, Bolshaya Tatarskaya str., 35 bld. 5 email: direct87@gmail.com