

Study on updating BDS Terrestrial Reference Frame using BDS Observations

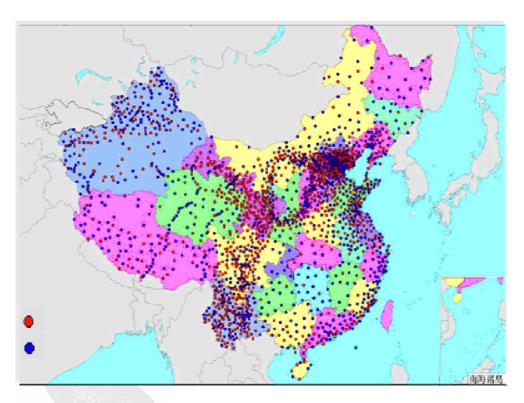
Qile Zhao¹, Na Wei¹, Xiangxin Guo¹, Zhigang Hu¹,

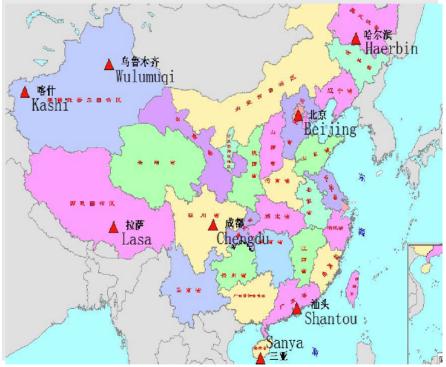
Xinhui Zhu²

- 1. GNSS Research Center, Wuhan University
- 2. Zhenzhou Institute of Surveying and Mapping

November, 2014

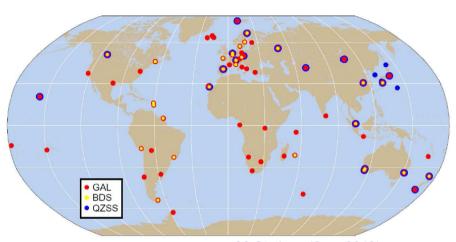
Overview


- 1. Background
- 2. BDS/GPS reference stations
- 3. Align the BDS/GPS reference stations to ITRF 2008
- 4. Updating of BDS Terrestrial Reference Frame using BDS observations
- 5. PCO and PCV Calibration for BDS/GPS receivers
- 6. Summary

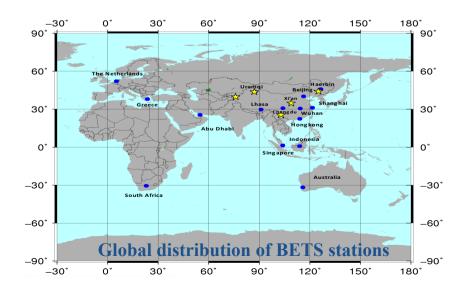


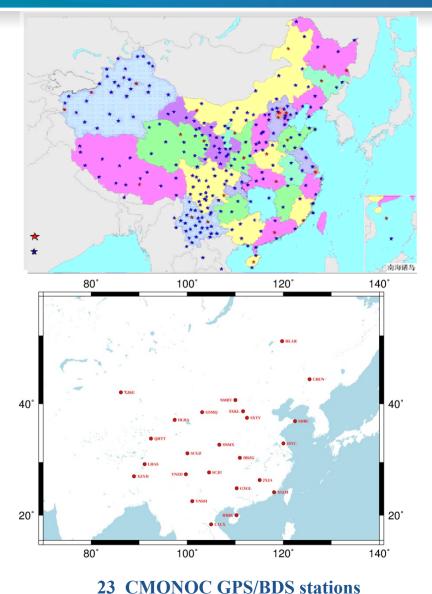
1.Background

 CGCS 2000 and CGS (2012) are realized using only GPS data

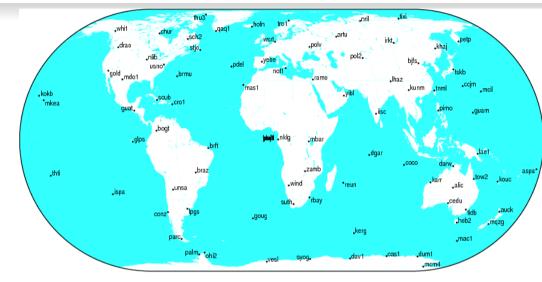


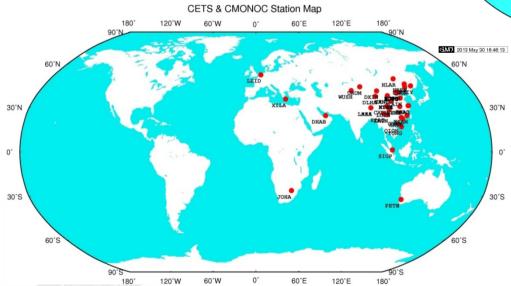
Could it be updated using BDS observations?


(WEI Ziqing, Compass Geodetic System, 2012, ICG-7) (YANG Yuanxi, Updates of CGCS 2000, 2010, ICG-5)

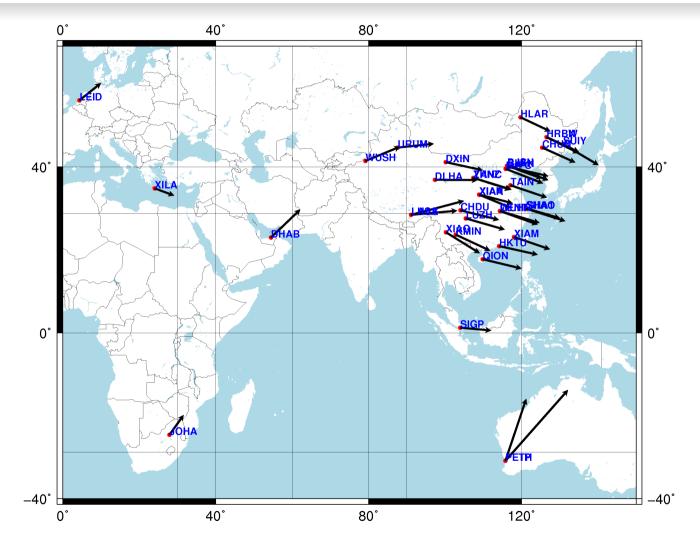


2.BDS/GPS reference stations


~90 Stations (Sep. 2013) ftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign/mgex/



_

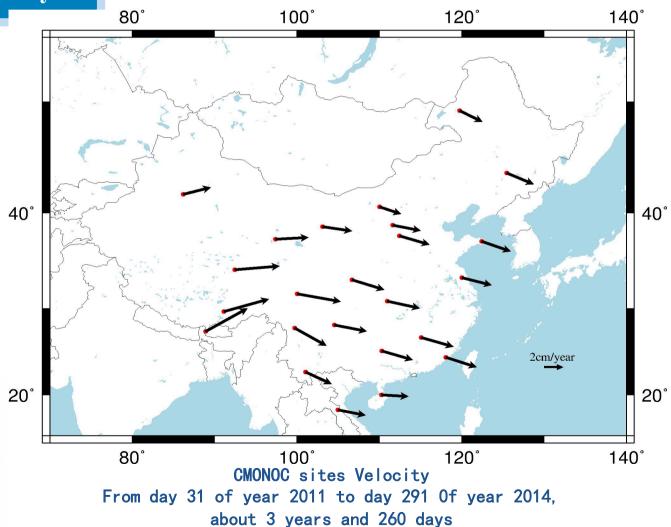


Distribution of Igb08 central station

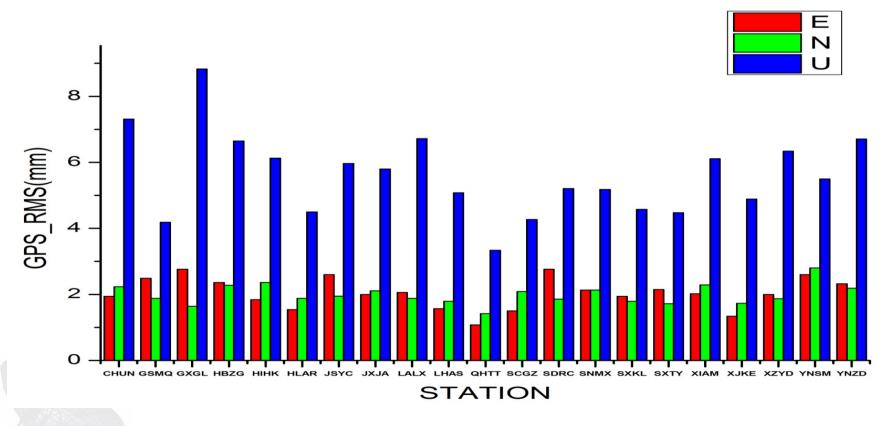
Global distribution of BETS and CMONOC stations

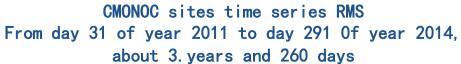
Precision Analysis

Site	Velocity (mm/yr)			Velocity RMS(mm/yr)			Posit	Source		
	North	East	Up	North	East	Up	North	East	Up	Jource
BJF1	-8.4	36.2	-6.9	0.18	0.20	0.46	2.30	2.65	6.03	CETS
BJFS	-13.0	33.2	4.0	0.14	0.14	0.37	1.97	1.96	5.11	CMONOC

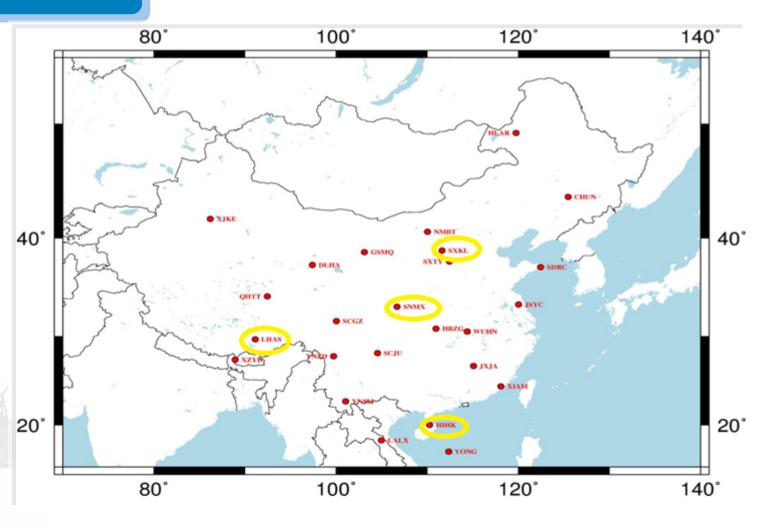

Sites		Velocity RMS(mm/yr)					Position RMS(mm)					
		Horizontal			Vertical		Horizontal			Vertical		
BETS sits (in China)	0.3			0.8		2.4			7.4		
BETS all sites		0.5			1.3	3	3.0			8.9		
BETS/CMONOC		0.3			0.9		2.5			7.7		
LU		-9.9	34.6	3.4		0.33	0.72	1.73	2.08	6.77	CMONOC	

EO.E.	212	0 110	0	0.10	OILU	01.12	1170	2100	0177	Ciriotto
NTSC	-26.2	46.0	-0.6	1.33	2.32	3.13	3.17	5.51	7.45	CETS
PETH	54.9	18.4	18.2	0.40	0.71	1.45	2.40	4.23	8.68	CETS
PFTP	62.8	55.4	-21.5	1.43	1.88	5.77	4.61	6.03	18.53	CETS
QION	-8.3	34.4	4.4	0.18	0.29	0.73	2.47	3.89	9.92	CMONOC
SHA1	-8.5	29.1	-4.3	0.44	0.62	1.64	2.18	3.10	8.19	CETS
SHAO	-11.1	35.0	-1.2	0.30	0.41	0.95	2.18	2.98	6.90	CMONOC
SIGP	-2.5	27.5	-18.8	0.67	1.44	2.58	4.55	9.81	17.63	CETS
SUIY	-18.6	31.4	-0.4	0.18	0.22	0.60	2.34	2.81	7.87	CMONOC
TAIN	-10.9	32.2	1.0	0.15	0.17	0.46	2.09	2.28	6.33	CMONOC
URUM	3.4	32.0	3.2	0.30	0.29	0.95	2.34	2.32	7.48	CMONOC
WUHN	-10.5	35.0	-3.7	0.18	0.22	0.62	2.23	2.69	7.56	CMONOC
WUSH	12.7	30.8	2.8	0.14	0.13	0.40	1.88	1.76	5.25	CMONOC
XIAA	-11.6	28.1	49.2	0.19	0.16	1.13	2.53	2.10	14.85	CMONOC
XIAG	-18.7	30.1	7.5	0.30	0.41	0.73	4.06	5.55	9.83	CMONOC
XIAM	-10.9	31.8	16.7	0.18	0.29	1.13	2.47	3.93	15.61	CMONOC
XIAN	-7.7	29.8	1.4	0.26	0.30	0.85	1.76	2.00	5.65	CMONOC
XILA	-6.4	17.3	-30.9	1.73	2.27	5.47	2.17	2.84	6.84	CETS
YANC	-10.5	32.8	5.0	0.13	0.14	0.38	1.87	1.94	5.33	CMONOC
ZHNZ	-10.4	33.7	4.3	0.24	0.27	0.80	1.80	2.00	5.90	CMONOC



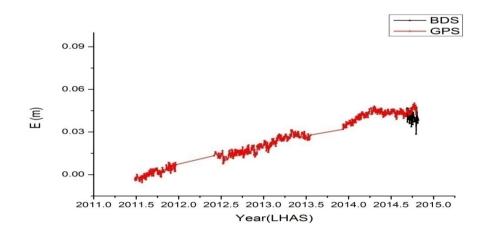

Precision Analysis

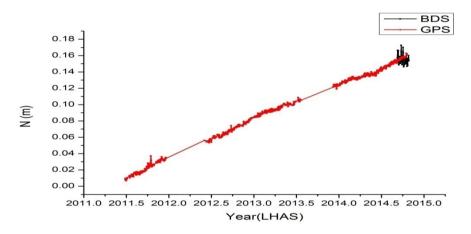
Precision Analysis

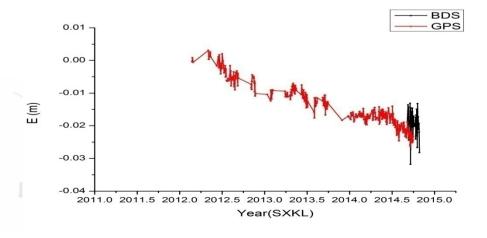


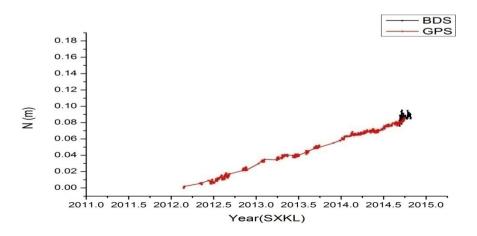
4.Update BDS Terrestrial Reference Frame using BDS observations

Simulation Study

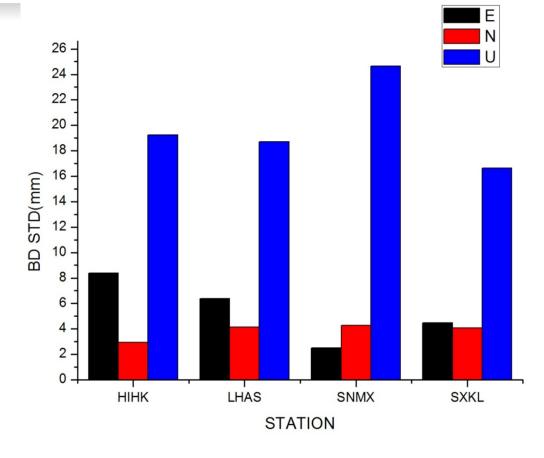





4.Update BDS Terrestrial Reference Frame using BDS observations

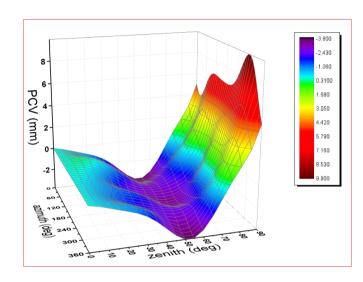

Simulation Study

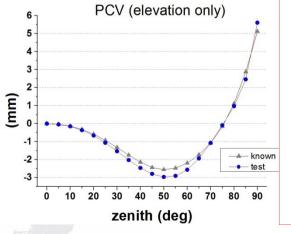
Small jump: the PCV of BDS used is the same with GPS Bigger noise: the Ambiguity fixing methold not applied.

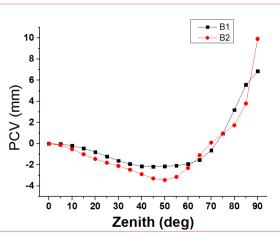


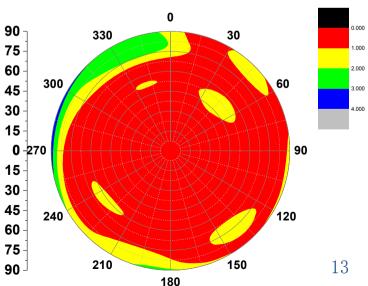
4.Update BDS Terrestrial Reference Frame using BDS observations

Simulation Study




Horizontal position acuraccy of CMONOC test four staion is about 4-8mm the PCV of BDS used is the same with GPS the Ambiguity fixing methold not applied.




5. PCO and PCV Calibration for BDS/ GPS receivers

6.Summary

- BDS Terrestrial Reference Frame was realized using GPS observations and is closely aligned to ITRF2008. The position and velocity were obtained using local tie. The accuracy is about 1cm and 2mm/y (see Wei, 2012 in ICG-6);
- BDS started to provide regional service in 2012. There are more 80
 BDS/GPS stations around the word. The data could be used to translate the reference information from ITRF2008 to BDS monitoring stations.
- Simulation study shows that using the BDS observation can update the BDS terrestrial Reference Frame at the accuracy of 1 cm and 2mm/y.
 The accuracy could be improved, when the accurate absolute PCO/ PCV model and ambiguity fixing method are applied.

