
BeiDou Navigation Satellite System

Space Service Volume Performance of BDS

Xi'nuo CHANG, Xiao MEI, Dr. Hui YANG China Academy of Space Technology, China

Boulder, U.S.A Nov,2015

Contents

- 1. Overview of BDS SSV
- 2. Outline of BDS SSV Booklet
- 3. BDS Space Segment
- 4. BDS Open Service Signals
- 5. BDS Antenna Parameters
- 6. BDS SSV Performance
- 7. Summary

Overview of BDS SSV

Previously,

- BDS SSV performance was first presented at ICG-8.
- SSV signal availability and PDOP satisfaction of BDS hybrid constellation was presented at ICG-9.
- BDS is willing to participate in the interoperable GNSS SSV for the benefit of space applications.
- As a WG-B recommendation of ICG-9, the idea of elaborating a booklet that characterize the contribution of each GNSS to an interoperable SSV for the benefit of the users was raised.
- This reports includes BDS booklet instruction, BDS construction and operation status update and SSV application experience.

Outline of BDS SSV Booklet

BeiDou Navigation Satellite System (BDS) Space Service Volume

Openness,

Compatibility,

Independency

and Gradualness

SPACE SEGMENT

Regional Coverage Constellation

5 GEO + 5 IGSO + 4 MEO + The equatorial projections of

The equatorial projections of the GEO satellites are at 58.75°E, 80° E, 110.5°E, 140°E and 160°E .

- The crossing longitudes of 3 IGSO satellites locate at 116°E, and the other 2 satellites locate at 95°E.
- The 4 MEO satellites are in the 7th and 8th phases of the 1st orbital plane, and in the 3rd and 4th phases of the 2nd orbital plane. (Walker24/3/1)

Global Coverage Constellation

The equatorial projections of the GEO satellites are at 58.75°E, 80° E, 110.5°E, 140°E and 160°E .

5 GEO + 31GSO + 27MEO

- The crossing longitudes of 3 IGSO satellites locate at 118°E.
- 24 out of 27 MEO satellites shape up into Walber 24/3/1, and the remaining 3 ones are separately taken as spare satellites in each orbit plane.

Timetable of Deployment

- The 17th BDS Satellite launched 30 Mar 2015
- The 18th&19th BD5 Satellites launched 25 Jul 2015
- The 20th BDS Satellite launched 30 Sep 2015

SERVICE PROVIDED

BDS can provide 2 types of service at the global level

OPEN SERVICE

Operational OS signals and Service

Modernized OS signals

OS Tignel	Carrier Prequency (MHz)	♦The performance of modern-				
B(-C)		ized OS signals is enhanced signifi-				
Bi-Cr	1976.42	cantly from the operational OS signals. ◆Bil signal will continue to pro-				
tre.						
82-04		vide service in the transitional status of BDS.				
82-61						
82-00						

AUTHORIZED SERVICE

- Short-message Communication Service
- Wide-area Differential and Integrity Service
- RDSS

Outline of BDS SSV Booklet

POLICY AND PLANS

- Provide open services globally and free of user charge.
- Provide continuous, stable and reliable services.
- . Improve performance continuously.
- Encourage compatibility and interoperability with other GNSS.
- Enhance application efficiency, broaden application domains, promote international applications.

E-mail : changxn@beldou.gov.cn Address: No.89, Nan Cai Yuan Street, Xi Cheng District, Beljing, China, 100054

BDS SSV PERFORMANCE

Parameters	0	iginal	Modemized		
Minimum Received Pewer	o dBi RCP antenna	Reference off-Boresite Angel	o dBi RCP antenna	Reference off-Boresite Angel	
BH(MEO)	-183.1	22	-194.1	3	
Bt(GEO/IGIO)	-188.8	а	-105.8	19	
B1(MEO)	-182.0	28	-182,7	20	
B2(GE0/1630)	-182.4	29	-164.4	22	

Signal Availability	BDS	(24M)	BD1(24	M/31/5G)
MEO 17V	≥1 Signal	2 4 Signals	≥1 Signal	≥ 4 Signals
2 DV	100%	299.0%	100%	100%
B:	100%	100%	100%	100%
HEO/GEO IIV	≥1 Signal	≥ 4 Signals	≥1 Signal	≥4 Signals
	293%	22.5%	295%	222%
81	100%	217%	100%	245%
81.	200		296%	

- SSV users could benefit from BDS hybrid constellation containing IGSO and GEO satellites.

-Signal availability of GEO/HEO SSV could be improved significantly by GNSS interoperation.

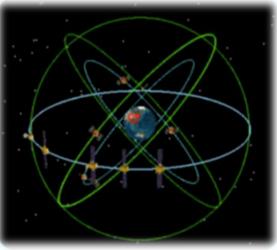
	ANTE	NNA	PAR/	MET	ERS		
OS Signal		Beam width(?) Original			em widd Madamia		
	894	-1.001	O-IIII	874	-6401	048	
m(M)	121	-23	120	=2.6	-25	:04	
Bi(L'G)	:22	:23	:20	-20	-19	=18	
82(90)	:30	128	128	-30	128	128	
E2(116)	:00	129	128	126	-22	12	

Lunar Exploration Spacecraft -CHANG'E 5-TI

Lounch date: 2014-10-25

Re-entry date: 2014-11-1

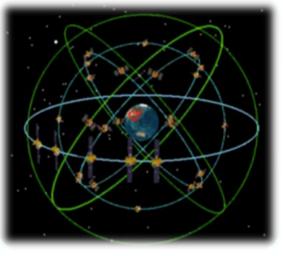
GN55 55V Application : The re-entry module equipped with a GN55 receiver for tracking.


In-Orbit Testing shows CNSS could provide good service during atmospheric re-entry around 60000bm.

BDS Constellation - Regional Coverage

- The regional BDS space segment consists of 14 satellites in orbit
 5 GEO + 5 IGSO + 4 MEO
- The equatorial projections of the 5 GEO satellites are at 58.75° E, 80° E, 110.5° E, 140° E and 160° E.
- The crossing longitudes of 3 IGSO satellites locate at 118° E, and the other 2 satellites locate at 95° E.
- The 4 MEO satellites are in the 7th and 8th phases of the 1st orbital plane, and in the 3rd and 4th phases of the 2nd orbital plane. (Walker24/3/1)

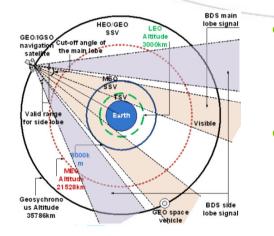
• The 5GEO+5IGSO constellation can provide regional coverage, and the MEO satellites were deployed for flight test of global service, performance improvement and system redundancy.



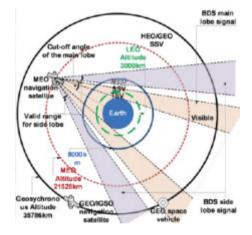
BDS Constellation - Global Coverage

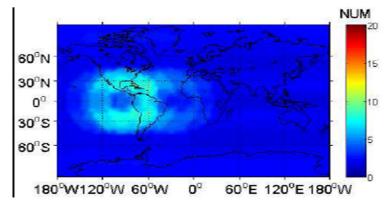
• BDS will be in full operation in 2020 and consist of 35 satellites.

5 GEO +3 IGSO +27MEO


- ♦ The equatorial projections of the 5 GEO satellites are at 58.75° E, 80° E, 110.5° E, 140° E and 160° E.
- The crossing longitudes of 3 IGSO satellites locate at 118° E.
- 24 out of 27 MEO satellites shape up into Walker 24/3/1, and the remaining 3 ones are separately taken as spare satellites in each orbit plane .

• The GEO and IGSO satellites are deployed for regional augmentation.




BDS Constellation Parameters

Earth Blocked Angle (EBA) of BDS MEO and GEO/IGSO satellites are 13.20° and 8.69° respectively.

The maximum distance of geosynchronous altitude spacecraft receiver and BDS MEO and GEO/IGSO satellites are 68806km and 83346km respectively.

- The signal beams from BDS GEO and IGSO satellites overlap each other above 120° W to 60° W at the altitude of 36000km.
- SSV users may benefit from this steady visibility at this area.

BDS Constellation Status

Num	Туре	Date	Status	Num	Туре	Date	Status
1	MEO	2007.4.14		11	GEO	2012.2.25	
2	GEO	2009.4.15		12	MEO	2012.4.30	
3	GEO	2010.1.17		13	MEO	2012.4.30	
4	GEO	2010.6.2		14	MEO	2012.9.19	
5	IGSO	2010.8.1		15	MEO	2012.9.19	
6	GEO	2010.11.1		16	GEO	2012.10.25	
7	IGSO	2010.12.18		17	IGSO	2015.3.30	
8	IGSO	2011.4.10		18	MEO	2015.7.25	
9	IGSO	2011.7.27		19	MEO	2015.7.25	
10	IGSO	2011.12.2		20	IGSO	2015.9.30	

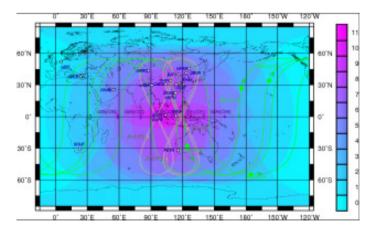
Operational Flight Test In maintenance Retired(de-orbit)

2015 – Starting Transition to Global Coverage

Num	Туре	Date	Num	Туре	Date
17	IGSO	2015.3.30	19	MEO	2015.7.25
18	MEO	2015.7.25	20	IGSO	2015.9.30

- ♦4 BDS Satellites were launched in 2015 from Xi Chang Satellite Launch Center.
 - •Simultaneous deployment of 2 MEO Satellites by upper stage vehicle
 - New generation payload validation (Rb atomic clock and H maser, etc.)
 - ♦ Modernized navigation signals validation
 - ♦Inter-satellite demonstration
 - ♦ Higher integrity platform and increased design lifetime

♦In orbit test of new launched BDS satellites are being conducted and the results are satisfactory.


BDS Open Service (OS) Signals

Operational BDS Open Service (OS) Signals

OS Signal	Carrier Frequency (MHz)	Modulation	BW(MHz)	NAV message data rate
B1I	1561.098	QPSK	4.092	500(G)/50(M/I)bps
B2I	1207.14	QPSK	20.46	500(G)/50(M/I)bps

11

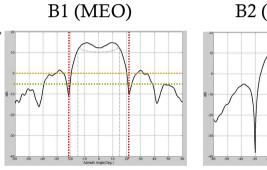
Currently BDS provides free and reliable positioning, velocity and timing services at Asian-Pacific region.

BDS Open Service (OS) Signals

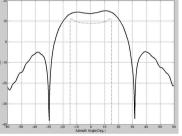
Modernized BDS Open Service (OS) Signals

- The performance of modernized OS signals B1-C(1575.42MHz), B2-a & B2-b (1191.795MHz) are enhanced significantly from the operational OS signals.
 - Dual frequency operation
 - Improved time and poisoning accuracy, etc.
- B1I signal will continue to provide service in the transitional status of BDS.
- For SSV users in the near future the legacy B1I signal is suggested.
- Modernized signals could provide better interoperability with other GNSSs..

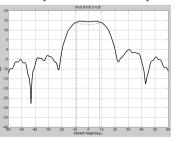
BDS Antenna Parameters

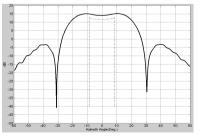

Operational Satellites Navigation Antenna Parameters

 Operational satellites navigation antenna parameter of BDS from pre-flight ground test.


	MI	ΞO	
OS Signal	FN BW	-5dBi BW	0dBi BW
B1I	$\pm 21^{\circ}$	$\pm 21^{\circ}$	$\pm 20^{\circ}$
B2I	$\pm 30^{\circ}$	$\pm 28^{\circ}$	$\pm 26^{\circ}$

GEO/IGSO


OS Signal	FN BW	-5dBi BW	0dBi BW
B1I	$\pm 22^{\circ}$	$\pm 21^{\circ}$	$\pm 20^{\circ}$
B2I	$\pm 30^{\circ}$	$\pm 29^{\circ}$	$\pm 28^{\circ}$


B2 (MEO)

B1 (GEO/IGSO)

B2 (GEO/IGSO)

BDS Antenna Parameters

Modernized Satellites Navigation Antenna Parameters

Modernized satellites antenna parameters of BDS from simulation*.

	OS Signal	FN BW	-5dBi BW	0dBi BW	EOE Angle
	B1	$\pm 26^{\circ}$	$\pm 25^{\circ}$	$\pm 24^{\circ}$	$\pm 13.2^{\circ}$
MEO	B2	$\pm 30^{\circ}$	$\pm 28^{\circ}$	$\pm 26^{\circ}$	$\pm 13.2^{\circ}$
	B3	$\pm 30^{\circ}$	$\pm 28^{\circ}$	$\pm 26^{\circ}$	$\pm 13.2^{\circ}$
	OS	FN	-5dBi	0dBi	EOE
	Signal	BW	BW	BW	Angle
GEO/IGSO	B1	$\pm 20^{\circ}$	$\pm 19^{\circ}$	$\pm 18^{\circ}$	$\pm 8.7^{\circ}$
	B2	$\pm 26^{\circ}$	$\pm 22^{\circ}$	$\pm 21^{\circ}$	$\pm 8.7^{\circ}$
	B3	$\pm 26^{\circ}$	$\pm 22^{\circ}$	$\pm 21^{\circ}$	$\pm 8.7^{\circ}$

*The simulation results are similar to the pre-flight ground test of satellites in orbit flight test.

Recent GNSS SSV Application in China

Lunar Exploration Spacecraft - CHANG'E 5-T1

CHANG'E 5-T1

- Launch date: 2014-10-25
- Re-entry date: 2014-11-1
- GNSS SSV Applications : The re-entry module equipped with a GNSS receiver for tracking.
- In-Orbit Testing shows GNSS could provide good service during atmospheric re-entry around 60000km.

BDS SSV Performance

Signal Availability and PDOP Satisfaction

Orbit Type	M	EO	GEO	/IGSO
Signal Type	B1	B2	B1	B2
Carrier Frequency (MHz)	1575	1192	1575	1192
Input Power of Antenna (dBW)	20	19	20	19
Antenna Gain(dBi)	-5	-5	-5	-5
EIRP(dBW)	15	14	15	14
Signal Power Split Loss(dB)	6	6	6	6
Maximum Distance (km)	68806	68806	83346	83346
Maximum Free Space Loss(dB)	193.1	190.7	194.8	192.4
Minimum Received Power (dBi)	-184.1	-182.7	-185.8	-184.4

•	Minimum received powe	er of SSV receiver.(Planed antenna))
	1		/

Parameters	Value				
Minimum Received Power	0 dBi RCP antenna	Reference off- Boresite Angel			
B1(MEO)	-184.1	25			
B1(GEO/IGSO)	-185.8	19			
B2(MEO)	-182.7	28			
B2(GEO/IGSO)	-184.4	22			

BDS SSV Performance

Signal Availability and PDOP Satisfaction

Signal Availability	BDS(24M)		BDS(24M/3I/5G)		BDS(24M) GNSS	+ another	BDS(24M/3I/5G) + another GNSS	
MEO SSV	≥ 1	≥ 4	≥ 1	≥ 4	≥1	≥ 4	≥ 1	≥ 4
B1/L1	100%	≥99.8%	100%	100%	100%	100%	100%	100%
B2,B3/L2,L5	100%	100%	100%	100%	100%	100%	100%	100%
GEO/HEO SSV	≥1	≥4	≥1	≥ 4	≥1	\geq 4	≥1	≥4
B1/L1	≥93%	≥2.5%	≥96%	≥22%	≥98.5%	≥50%	≥99%	≥64%
B2,B3/L2,L5	100%	≥17%	100%	≥45%	100%	≥83%	100%	≥88.5%

- Signal availability are improved if GEO/IGSO are taken into consideration.
- Working with another interoperable GNSS the signal availability of GEO SSV will be increased by nearly two times.

Summary

- The outline of SSV booklet is discussed for users' better understanding of BDS and its space service volume availability.
- GNSS space users could benefit from BDS hybrid constellation containing IGSO and GEO satellites.
- The modernized BDS Open Service (OS) signals will make more contribution to SSV interoperation.
- New generation BDS satellites are under validation test in orbit. Better service will be delivered to territorial and space users in the near future.
- GNSS applications of SSV has been achieved in China and demand for SSV service will continue to increase.

BeiDou Navigation Satellite System

Thank you for your attention .

