

GNSS, SPACE WEATHER and CAPACITY BUILDING

Christine Amory-Mazaudier and GIRGEA TEAM <u>christine.amory@lpp.polytechnique.fr</u>

Sorbonne Paris, UPMC Univ. Paris VI, LPP, Paris, France T/ICT4D, Abdus Salam International Centre for Theoretical Physics /Staff,Trieste, Italy

MINISTÈRE DES AFFAIRES ÉTRANGÈRES ET DU DÉVELOPPEMENT INTERNATIONAL

- GPS \rightarrow GNSS
- Space Weather
- Capacity Building

- Last decade : mainly GPS -> Now -> GNSS
- <u>Research</u> and applications

GPS : the most larger network of scientific ground based measurements

Provided by T. Tsugawa (NCIT, JAPAN)

Space Weather : effects on GNSS

Integration of Physical processes in the Sun Earth system / effects on new technologies

The satellite signal is strongly modified by ionosphere and troposphere

TEC : Total Electron Content

LAYERS

> 600 km EXOSPHERE few collisions, Particles follow balistic orbit

80-600 kmTHERMOSPHEREIonization by the solar X-EUVradiationIONOSPHERE,TECand scintillations

30-80 km MESOSPHERE Absorption of the radiation UV by the ozone layer

11-30 kmSTRATOSPHERETurbulence

0-11 kmTROPOSPHEREMeteorological phenomenaWater Vapour content

Ionospheric propagation

Scintillations

Fluctuations of the signal dues to the inhomogeneity of the medium

Scintillations of amplitude

Scintillations of phase

Echelles : ± 3 rad.

NECESSITY TO TRAIN IN SPACE WEATHER ALL OVER THE WORLD

- \Rightarrow Merging of different scientific disciplines
- ⇒ Connection between Research and Applications

Visible Imaging System/POLA The University of Iowa

At equatorial latitudes : TEC variations on St Patrick's day storm

Physics of the connections between auroral and equatorial regions

Capacity building , Space Weather and use of GNSS Training and Research <u>Training by scientists : scientific research</u> <u>School for all scientists using GPS</u> <u>Basic GPS observables</u>

Code (pseudo-range):

$$P_i = \rho + c \cdot (dt - dT) + d_{iono} + d_{tropo} + v_P$$

• Phase (differenced wrt phase of local oscillator)

$$\Phi_{i} = \rho + c \cdot (dt - dT) + \lambda \cdot N - d_{iono} + d_{tropo} + v_{\Phi}$$
Distance
Receiver-
satellite
Clock offsets
Receiver-
satellite
Clock offsets
Clock offsets
(dt = receiver Integer Ionospheric errors
phase delay
ambiguity Tropospheric delay

Scientific projects in the framework of UNBSSI United Nations Basic Space Science Intitiative

IEEY: International Equatorial Electrojet year /1992–1994/ IHY: International Heliophysical Year /2007–2009/ ISWI: International Space Weather Initiative / 2010–2012/ => Friendly framework ISWI

Methodology

Schools Distribution of tools and constitution of data base PhD students Positions at University Curricula in Universities

Network ISWI : http://www.iswi-secretariat.org 84 countries

Results of the GIRGEA network 24 countries of ISWI network

PERMANENT : TRAINING BY INTERNATIONAL ORGANIZATIONS

and RESEARCH NETWORKS

T/ICT4D Abdus Salam ICTP + Boston College essentially : inospheric effects on GNSS/Space weather, several schools each year at Trieste (20-24 May 2016)

CRASTE-LF

()

Master of GNSS in the Regional Centers (affiliated to UN), by the past essentially on global positionning and now Space Weather, Master (Web) in Plasma Physics,

Permanent project of SCOSTEP and UN : 1 event each year [school or workshop on Space Weather] (7-17 November 2016 in India)

A school on Space Weather, each 2 year organized in North or West Africa by scientists with the CRASTE-LF (12-28 October 2017) 20

- African countries with a coordinator ISWI (20 among 82 = 24%)
- Countries with tool and no coordinator ISWI (13)
- Training at university (12) **UN** / Regional Schools

Conclusion

- There are 54 countries in AFRICA.
- only 33 are concerned by ISWI,
- only 12 are developing curricula at University
- => we have to pursue capacity building in AFRICA in order to reach all the countries
- Interest of connection between research and application
 to predict the impact of solar events on Earth's environment and perform GNSS/EGNOS