ICG Working Group D Reference Frames, Timing and Applications

How GNSS CORS in Japan works for geodetic control and disaster mitigations

ICG11, Nov. 7-11, 2016, Sochi, Russia Hiromichi TSUJI Geodetic Observation Center Geospatial Information Authority (GSI) of Japan

Geospatial Information Authority of Japan

- **1. Introduction to GNSS CORS in Japan**
 - <u>GNSS Earth Observation Network</u> system (GEONET)
- **2. How GEONET works for**
 - Geodetic control
 - Realization of ITRF in tectonically active regions
 - Disaster mitigations
 - Real-time GNSS analysis system for rapid earthquake fault estimations

Introduction to GEONET

Positioning with GNSS

Geospatial Information Authority of Japan (GSI)

Car Navigation

Land Surveying

 ✓ Point positioning (XYZ) or (Lon, Lat, H)
 ✓ Precision ~ 10 m

- One of the Largest <u>Continuously</u> <u>Operating Reference Stations</u> networks
 - <u>1,300 permanent stations</u>
 <u>with 20km spacing</u> in Japan
 - Collects <u>GNSS</u> data <u>every seconds</u>, and provides data / products to users
 - Includes 7 IGS stations
- Infrastructure for surveying and precise positioning in Japan <u>since 1994</u>

GEONET data / outcomes

Geospatial Information
Authority of Japan (GSI)

How GEONET works for geodetic control - Realization of ITRF in tectonically active regions

Seismicity map of the world Geospatial Information Authority of Japan (GSI)

世界の震源分布

Earthquakes > M5.0 in 1977-2014

東京大学 地震研究所

Earthquake Research Institute, University of Tokyo, http://www.eri.u-tokyo.ac.jp

Tohoku EQ (M9.0) March 11, 2011

Coseismic deformation field Geospatial Information Authority of Japan (GSI) Observed by GEONET with 1Hz

15:15, March 11, 2011 Largest after shock M7.7

Post processed 1 Hz PPP kinematic solutions with GIPSY 6.1 (Nishimura, 2011) www.gsi.go.jp/cais/chikakuhendo40010.html

Vectors whose error exceeds 0.1m are not plotted.

Site Coordinates of GEONET Geospatial Information Authority of Japan (GSI)

Days after the mainchock

Japanese Geodetic Datum (JGD) 2000

- Official coordinates for surveyors in Japan
- Static datum: Realization of ITRF94 with the epoch 1997.0
- Obsolete in east Japan after 2011 Tohoku EQ

- Should be updated using VLBI and GEONET results
- The timing was decided by the predicted postseismic deformation.

Update of official site coordinates (JGD2011)

 New official coordinates of GEONET form JGD2011 (ITRF2008) with the epoch May 24, 2011 for eastern Japan

Geospatial Information Authority of Japan (GSI)

- Accelerated infrastructure reconstruction in Tohoku area.
- This quick response was achieved by the continuous observation of GEONET.

Although JGD2011 is a static datum whose epoch is fixed, we also provide daily site coordinates aligned with ITRF and <u>semi-dynamic correction parameters</u>.

How GEONET works for disaster mitigations Real-time GNSS analysis system for rapid earthquake fault estimations (REGARD)

The following slides are prepared by Mr. Satoshi Kawamoto, GSI. Development of REGARD is the joint effort with Tohoku University.

Motivation:

improvement of tsunami warning in Japan

Tsunami Warning after the 2011 Tohoku Earthquake (Mw 9.0)

- Early Earthquake Warning: 30 sec.
- Tsunami Warning: 3 min.
- Initial magnitude (EEW) was Saturated at M7.9
- Underestimating tsunami heights
 - How to prevent saturations?

Geospatial Information Authority of Japan (GSI)

(www.gsi.go.jp/cais/chikakuhendo40010.html)

Provides:

- Displacement wave-form
- Mw free from the saturation problems
- Rupture length and width
- Size of a potential subsequent tsunami

GEONET real-time analysis

Geospatial Information Authority of Japan (GSI)

4.0

0

50

100 150 200 250 300

Seconds after E.Q.

GOAL: Provides Mw < 3minutes

350

Flow diagram of REGARD

2003 Tokachi-oki Earthquake

Geospatial Information Authority of Japan (GSI)

(Mw 8.0)

 Stable magnitudes were derived within 100 sec by both modeling routines

2011 Tohoku Earthquake

(Mw 9.0)

- Stable after 120 seconds
- No saturation occurred for magnitude estimates using GPS real-time positionings

Horizontal Crustal deformation from REGARD

Observed significant horizontal displacements of up to 1 m

Real-time earthquake fault estimates at Kumamoto EQ

Geospatial Information

Authority of Japan (GSI)

The fault model (final) Kumamoto EQ

• Earthquake fault with right-lateral slip along the Futagawa fault segment

- GSI has been operating GEONET in Japan for the past two decades
 - -to establish a regional reference frame consistent with the ITRF, and
 - -to monitor crustal deformations for disaster mitigations.
- GNSS is a great tool for society !
- Geodetic reference frame (i.e. ITRF) is necessary to connect GNSS and society.