

Global Navigation Satellite System (GLONASS): Status and Development

Tatiana Mirgorodskaya Information and Analysis Center for Positioning, Navigation and Timing Roscosmos State Corporation

UN-Nepal Workshop on the Applications of Global Navigation Satellite Systems December 12 2016
Kathmandu, Nepal

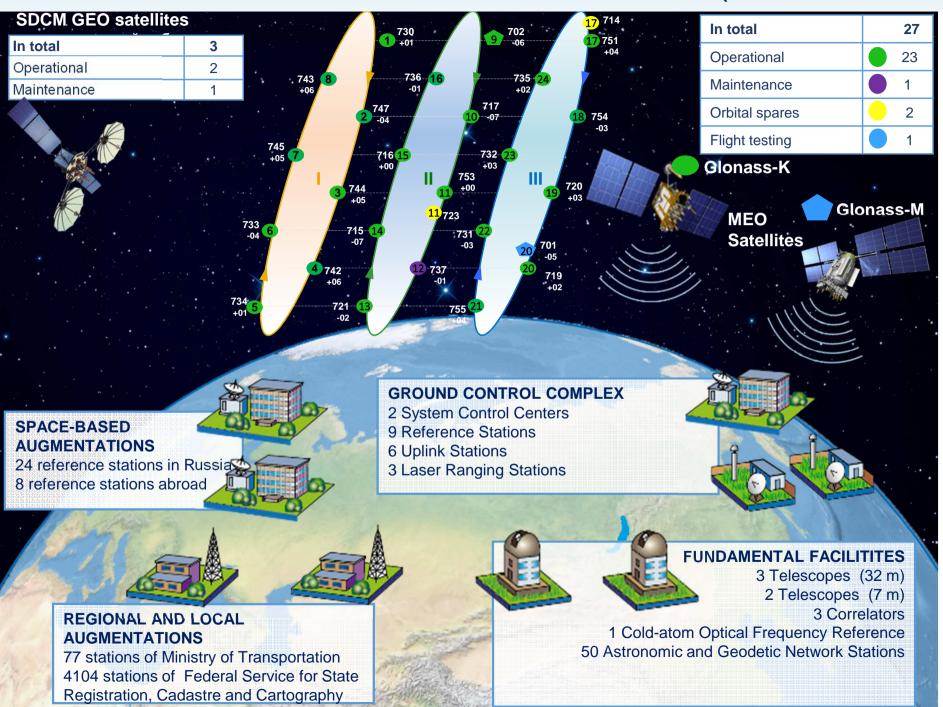
CONTENTS

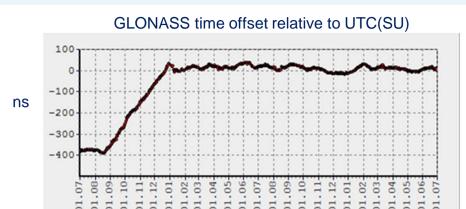
55° ± 10° S

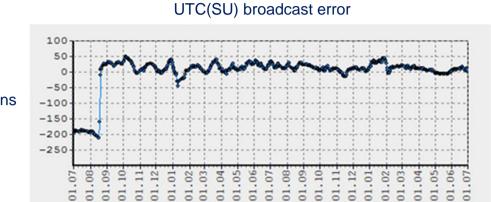
- NATIONAL SATELLITE NAVIGATION POLICY
- GLONASS STATUS
- GLONASS CONSTELLATION SUSTAINMENT
- SPACE SEGMENT MODERNIZATION
- GLONASS AUGMENTATIONS
- GNSS MONITORING AND PERFORMANCE ASSESSMENT SYSTEM
- GLONASS REFERENCE DOCUMENTS
- GLONASS USER INFORMATION SUPPORT
- SUMMARY

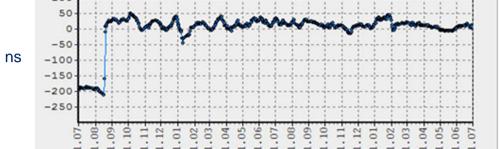
NATIONAL SATELLITE NAVIGATION POLICY AND ORGANIZATION

- Presidential Decree of May 17, 2007 No. 638 "On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation"
- Federal Programme on GLONASS Sustainment, Development and Use for 2012-2020 planning and budgeting instrument for national PNT activities
- Programme governance:


- Programme Goals:
 - Improving system performance in terms of accuracy and integrity
 - Ensuring guaranteed positioning, navigation and timing solutions in restricted visibility, interference and jamming conditions
 - > Enhancing current application efficiency and broadening application domains

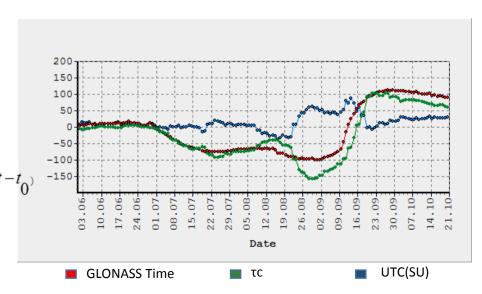

GLONASS STATUS 55°


(as of 24 November 2016)





CURRENT STATUS OF GLONASS TIMESCALE AND UTC(SU) BROADCAST ACCURACY



- in compliance with Specs
- · but stopped meeting growing requirements of timing users
- Aug. 18, 2014 start of correction activities
- 2015 offset kept within 35 ns
- 1st half of 2016 offset kept within 25 ns
- 2nd half of the 2016 malfunctions of the Central disturbances increased offset to UTC(SU)
- **GLONASS** Timescale is being corrected with an increment of ~2 ns per day by changing the control correction $\Delta T^{ynp}(t-t_0)$
- by the end of 2016:
 - GLONASS Time Offset relative to UTC(SU) is expected to reach ± 20 ns
 - UTC(SU) broadcast error is expected to reach ± 5 ns

- Aug. 18, 2014 start of correction activities
- Aug. 2014 Jun. 2016 UTC(SU) broadcast error is within 10 ns

GLONASS CONSTELLATION SUSTANMENT

Year	2016				2017				2018			
	1	ll l	III	IV	j j	II	III	IV	1	II	111	IV
Total in constellation	28	28	27	25	25	24	24	24	24	24	24	25
Operational	24	24	24	24	24	24	24	24	24	24	24	24
\uparrow	51	53			56 57 58	52	59	60	61			
					Tracess of B							

Glonass-M

- 2 Glonass-M satellites decommissioned in 2016
- 2 Glonass-M satellites launched (07 Feb 16 and 29 May 16)
- a number of block M sats operate beyond their design life
- 7 Glonass-M sats in ground stock to be launched in 2016-2018 to replace those well beyond their design life

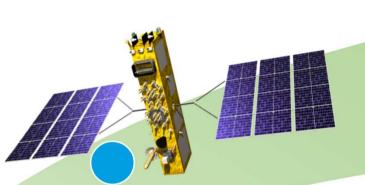
Glonass-K

- 2 Glonass-K in orbit
 - 1 undergoing flight testing
 - 1 commissioned in Feb 2016, operational



SPACE SEGMENT MODERNIZATION

signals


2016

Glonass-K Evolution (K2) Single phased-array antenna for L1/L2/L3 FDMA and CDMA

Advanced clocks – 5x10⁻¹⁴–5x10⁻¹⁴

Design to be finalized by the end

- Signals: L1/L2OF, L1/L2SF,
- and CDMA signals)
- Enhanced antijam capabilities of new **CDMA** signals
- Experimental clock $-5x10^{-14}-5x10^{-15}$
- Onboard one-way laser ranging
- data uploads, optical crosslinks
- 12.5 year design life
- SaR

- L1/L2OC, L1/L2SC, L3OC
- 2 phased-array antennas (for FDMA
- New message structure

- More frequent ephemeris and clock

Glonass-K Satellites

10 year design life

control, ODTS SaR payload

Unpressurized platform Enhanced service systems

Signals: L1/L2OF, L1/L2SF, L3OC

■ Cs, Rb onboard clocks – 1X10⁻¹³

Advanced satellite command and

GLONASS AUGMENTATIONS

All types of augmentations to support all types of high accuracy services developed and continue to expand

- network densification
- space segment modernization
- coverage extension

PERFORMANCE MONITORING AND ASSESSMENT SYSTEM

- Independent monitoring and verification of performance characteristics versus system requirements documents of GLONASS and its constituent parts
- Generating input data to assess GLONASS Program KPIs
- Determining GLONASS performance at user level
- Calculating input data for GLONASS certification

GNSS MONITORING AND PERFORMANCE ASSESSMENT SYSTEM CENTER

INFORMATION SHARING SUBSYSTEM

CALCULATION, ANALYSIS AND CONTROL SUBSYSTEM

DATA GENERATION SUBSYSTEM

REFERENCE STATION

ROSCOSMOS

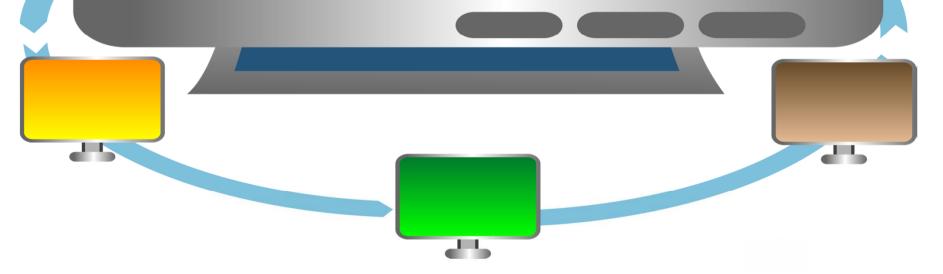
GLONASS REFERENCE DOCUMENTS

4 GLONASS REFEENCE DOCUMENTS ARE TO BE RELEASED IN Q-4 2016

- Interface Control Document "General Description of the GLObal NAvigation Satellite System with the Code Division Multiple Access Signals"
- Interface Control Document "GLONASS L1 Open Service Code Division Multiple Access Signal"
- Interface Control Document "GLONASS L2 Open Service Code Division Multiple Access Signal"
- Interface Control Document "GLONASS L3 Open Service Code Division Multiple Access Signal"

Type of difference	FDMA signal reference documents	CDMA signal reference documents				
Variable number of SVs	0 to 24	0 to 63				
Message structure	Fixed structure "superframe/frame/string"	Continuous sequence of strings, non-fixed length, variable composition depending on the number of operational SVs, types of strings can be added, backward compatibility with receivers currently in use				
Time stamp length	30 bits	12 bits				
Value of LSB	0.4 m	0.001 m				
Signal health status periodicity	1 per 4 sec	1 per 2 sec for L1 and L2 1 per 3 sec for L3				

GLONASS USER INFORMATION SUPPORT



USER INFORMATION SUPPORT (WWW.GLONASS-IAC.RU)

PURPOSE: PROVIDING RUSSIAN AND INTERNATIONAL USERS WITH INFORMATION ABOUT GLONASS AND OTHER GNSS — ONE OF THE ROSCOSMOS ACTIVITIES

PRIMARY TASKS:

- GLONASS orbital constellation monitoring in real time
- Official GLONASS SCC bulletins
- Estimation and quality prediction for GLONASS and other GNSS radio-navigation fields
- GLONASS and other GNSS performance evaluation
- High-precision GLONASS and other GNSS ephemeris and time information
- Information and consultation service on satellite navigation

WWW.GLONASS-IAC.RU

SUMMARY

55° ... 179 54' ... 99

- GLONASS budgeting is planned through 2020, planning for the next period is underway
- Orbital constellation + Glonass-M ground spares will provide robust system operation until more new generation satellites come into service
- Phased approach to space segment modernization
- Activities focused at performance improvement underway
- All types of augmentations developed and continue to expand
- 4 GLONASS reference documents are approved and to be publicly released in the nearest future

Thank you!

Information and Analysis Center for PNT

Tel./fax: +7 (495) 513-41-39

www.glonass-iac.ru

