Utility of Sensor Fusion of GPS and Motion Sensor in Android Devices In GPS-Deprived Environment

Suresh Shrestha, Amrit Karmacharya, Dipesh Suwal

Introduction

- The use of Global Positioning System (GPS) signals to deliver location based services
- Implemented by smart phones
- Smart city

Introduction

- antennae needs a clear view of the sky
- GPS-deprived conditions
 - Urban settlements
 - Indoor(inside hotels,malls)

Application in GPS

- GPS accuracies of smart phones have not been studied nearly as thoroughly as typical GPS receivers
- Median horizontal error in static outdoor environment is around 5.0 to 8.5 m.
- In dense and crowded areas with more buildings it is even worse.
- Most android devices are equipped with motion sensors
- This can be used to complement GPS accuracy

INS (Inertial Navigation System)

 continuously updates the position, orientation and velocity of the moving object from motion sensor readings.

• typically contain

- gyroscope : measuring angular velocity
- accelerometer : measuring linear acceleration
- immune to jamming and deception

Drawbacks of INS

- Measurement of acceleration and angular velocity cannot be free of error.
- Integration drift
- unrestrained positioning errors in the absence of coordinate updates from external source
- GPS can be used for updating

integrate other non-GPS methods in GPS-denied environments in order to enhance the availability and robustness of positioning solutions

Kalman Filter

• Estimating Algorithm

- uses a series of measurements (with some inaccuracies) observed over time
- produce more precise estimates by reducing noise

Algorithm

- The algorithm works in a two-step process.
 - Prediction Phase: Kalman filter produces estimates of the current state variables, along with their uncertainties.
 - Update Phase: Once the outcome of the next measurement is observed, these estimates are updated using a weighted average, with more weight being given to estimates with higher certainty.
- The algorithm is recursive. It can run in real time, using only the present input measurements and the previously calculated state and its uncertainty matrix; no additional past information is required.

Observed Point and Variance

Source: http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/

Prediction Phase

Source: http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/

Transformation

Source: http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/

Update Phase

Source: http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/

Source: http://www.bzarg.com/p/how-a-kannan-jnter-works-m-pictures/

Kalman Filter Parameters

Model:

$$x_k = Ax_{k-1} + Bu_k$$

$$z_k = Cx_{k-1} + v_k$$

Predict.

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_k$$
$$P_k = AP_{k-1}A^T$$

Update:

$$G_k = P_k C^T (CP_k C^T + R)^{-1}$$
$$\hat{x}_k = \hat{x}_k + G_k (z_k - C\hat{x}_k)$$
$$P_k = (I - G_k C) P_k$$

- The algorithm works in a two-phases
- prediction phase, old position will be modified according to the physical laws of motion.
- Next, in the update phase, a measurement of the position is taken from the GPS unit.

Data View

- Black: predicted,
- green: filtered
- red: observations

Experiment

53.44

13:18

0

Android devices used

Experiment

 The algorithm is supposed to be hard coded to the device but for demonstration we have extracted the data from android device sensors in csv format.

				Data and Obser	valionin		uroid device			
timestamp	gps	easting	northing	accelerometer	x	у	orientation	x	у	z
1467528475	1	9522455.035	3201110.468	3	-0.201	2.72	81	241.812	-16.062	-1.031
1467528476	1	9522455.035	3201110.468	3	-0.172	2.614	81	243.5	-15.688	-0.734
1467528477	1	9522455.035	3201110.468	3	-0.575	2.72				
1467528478	1	9522455.035	3201110.468	3	-0.421	2.519	81	241.453	-14.656	-2.375
1467528479	1	9522455.035	3201110.468	3	0.23	2.509	81	226.203	-16.328	2.234
1467528480	1	9522455.035	3201110.468	3	0.393	2.413	81	175.016	-11.812	3.578
				-						

Data and Observation from android device

Data logging

Motion Sensors

XY direction of accelerometer is different from that of gyroscope/magnetometer.

Accelerometer measures Ay in forward direction of device and Ax perpendicular to it

Gyroscope/Magnetometer gives Ox as bearing from north

Data Calculation

Predict Phase										update				
Ae	An	ue	un	dt	de	dn	e	n	р	g	ek	nk	pk	
											9522455	3201110		
-2.3025	-1.461997878	0	0	1	-0.53279	2.906915403	9522454.502	3201113	1	0.166667	9522455	3201113	0.833333	
-2.2626	-1.320289794	-2.30247	-1.462	1	-2.38847	-0.154997878	9522452.647	3201110	0.833333	0.142857	9522453	3201110	0.714286	
-0.575	2.72	-4.56508	-2.78229	1	-4.85258	-1.422287672	9522450.182	3201109	0.714286	0.125	9522451	3201109	0.625	
-2.0116	-1.573595548	-5.14008	-0.06229	1	-5.35058	1.197212328	9522449.684	3201112	0.625	0.111111	9522450	3201112	0.555556	
-1.9702	-1.570479215	-7.15165	-1.63588	1	-7.03665	-0.38138322	9522447.998	3201110	0.555556	0.1	9522449	3201110	0.5	
-0.1819	-2.438019318	-9.12182	-3.20636	1	-8.92532	-1.999862435	9522446.11	3201108	0.5	0.090909	9522447	3201108	0.454545	
1.8288	-3.218743832	-9.3037	-5.64438	1	-10.1752	-4.011381754	9522443.746	3201104	0.454545	0.083333	9522445	3201104	0.416667	
-0.1194	-3.40799247	-7.4749	-8.86313	1	-7.4319	-7.158625586	9522445.599	3201098	0.416667	0.076923	9522446	3201098	0.384615	
1.43606	-3.57962314	-7.59434	-12.2711	1	-8.25984	-10.46111806	9522444.548	3201093	0.384615	0.071429	9522445	3201093	0.357143	
0.36262	-6.358782287	-6.15828	-15.8507	1	-6.17728	-12.6662412	9522446.52	3201089	0.357143	0.066667	9522447	3201090	0.333333	
0.29013	-4.694678368	-5.79566	-22.2095	1	-5.73366	-19.85852348	9522447.186	3201080	0.333333	0.0625	9522448	3201081	0.3125	
-0.9389	-3.425647136	-5.50553	-26.9042	1	-4.93103	-25.22370185	9522448.211	3201074	0.3125	0.058824	9522449	3201076	0.294118	
1.46995	-2.172849049	-6.44439	-30.3298	1	-6.84189	-29.07984899	9522446.746	3201070	0.294118	0.055556	9522447	3201071	0.277778	
1.97443	-4.349837928	-4.97444	-32.5027	1	-4.55294	-30.15169803	9522449.814	3201068	0.277778	0.052632	9522450	3201069	0.263158	
2.84058	-3.501945002	-3.00002	-36.8525	1	-3.19652	-34.60653596	9522451.615	3201062	0.263158	0.05	9522452	3201064	0.25	
2.46587	-2.10772523	-0.15944	-40.3545	1	-0.59994	-38.79348096	9522454.435	3201057	0.25	0.047619	9522454	3201058	0.238095	
-0.4516	-3.37694788	2.306439	-42.4622	1	2.976939	-40.89620619	9522458.234	3201053	0.238095	0.045455	9522458	3201055	0.227273	
0.70475	-4.72114041	1.854855	-45.8392	1	2.635355	-43.58365407	9522457.67	3201049	0.227273	0.043478	9522458	3201051	0.217391	
1.80332	-2.504461411	2.559607	-50.5603	1	2.617107	-49.01829448	9522458.097	3201043	0.217391	0.041667	9522458	3201045	0.208333	
4.88537	-2.200655558	4.362924	-53.0648	1	3.898424	-50.42625589	9522460.046	3201040	0.208333	0.04	9522460	3201042	0.2	
3.83663	-1.976189092	9.248299	-55.2654	1	9.521299	-53.12491145	9522466.782	3201036	0.2	0.038462	9522466	3201038	0.192308	
4.17855	-0.496479474	13.08493	-57.2416	1	13.17593	-55.13960054	9522471.439	3201033	0.192308	0.037037	9522471	3201035	0.185185	

This calculations are performed by pyKalman Module in python

Result

Results and Conclusion

- The acceleration in z direction is greatly affected by gravity (9.8 m/s²). Component of this acceleration affects other axes as well resulting error in position.
- Requires more sensitive motion sensors

Conclusion

- various potential application areas such as robotics, shopping malls, museums, underground areas, city area, etc
- With increased computational power on handheld devices, a propagation-based technique could be implemented to determine the position of the device.

Thank You