

U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology

GPS Adjacent Band Compatibility Assessment

Space-Based PNT Advisory Board Meeting

May 18, 2016

EXCOM Co-Chair Letter to NTIA

 "... without affecting existing and evolving uses of space-based PNT services <u>vital to economic, public</u> <u>safety, scientific, and national</u> security needs."

> U.S. Department of Transportation Office of the Assistant Secretary for

Research and Technology

HERBERT C. HOOVER BUILDING, ROOM 6822 • 14TH & CONSTITUTION AVENUE, NW • WASHINGTON, D.C. 20280 PHONE (202) 482-5809 • FAX (202) 482-4429 • WWW.PNT.GOV

GPS Adjacent Band Compatibility Assessment

- DOT Study to Evaluate:
 - Adjacent-band power levels, as a function of offset frequency, necessary to ensure continued operation of all applications of GPS services
 - Adjacent-band power levels to ensure continued operation of all applications of GPS services by future GPS receivers utilizing modernized GPS and interoperable Global Navigation Satellite System (GNSS) signals

Approach to DOT GPS Adjacent Band Compatibility Assessment

- Certified Aviation Portion of Effort Led by FAA
- Non Aviation Certified effort (all other applications) led by DOT/OST-R Volpe Center
- DOT Extended Pos/Nav Working Group (Civil Departments and Agencies)
 - GPS Directorate, Aerospace, Mitre, Zeta Associates, and Stansell Consulting
- Conduct public outreach to ensure the plan, on going work, and assumptions are vetted and an opportunity to gain feedback
 - Held Many Public Workshops
 - Federal Register Notice for Comments/Input on Draft Test Plan
 - One-on-One Discussions with Industry
 - Open and Transparent Approach

Activity Since October 2015 Advisory Board Meeting

- Finalized GPS/GNSS Receiver Test Plan
- Contracted for Use of WSMR Anechoic Chamber
- Coordinated Government and Manufacturer Participation and executed Non Disclosure Agreements (NDAs)
- Developed Test Procedures
- Developed/Validated Radiated RF Test Environment
- Conducted GPS/GNSS Receiver Testing

Testing Overview

- GPS Receiver Testing Conducted April 25-29, 2016 at the Army Research Laboratory's (ARL) Electromagnetic Vulnerability Assessment Facility (EMVAF), White Sands Missile Range (WSMR), NM
 - EMVAF 100' x 70' x 40' Anechoic Chamber
- Participation included DOT's federal partners/agencies and GPS manufacturers
- 80 receivers were tested representing six categories of GPS/GNSS receivers: General Aviation (non certified), General Location/Navigation, High Precision & Networks, Timing, Space Based, and Cellular
- Tests Conducted:
 - Linearity (receivers CNR's estimators are operating in the linear region)
 - 1 MHz Bandpass Noise (Type 1)
 - 10 MHz LTE (Type 2)
 - Intermodulation (effects of 3rd order intermodulation)

U.S. Department of Transportation

Office of the Assistant Secretary for Research and Technology

Signal Generation Equipment

- GNSS Generation and Playback
 - Spirent GSS8000 GNSS signal simulators synchronously generate signals for the GPS+WAAS, Beidou, GLONASS, and Galileo systems
 - Constellations recorded using three National Instruments (NI) Vector Signal Analyzers
 - Playback through three NI Vector Signal Generators (VSGs)
- Interference Signal Generation
 - Interference signal generation uses a VSG to generate the interference signal of either Type 1 or Type 2
 - 200 Watt High Power Amplifier used to boost the interference signal
 - 22 RF filters used to sufficiently attenuate the interference out-of-band emission (OOBE), to ensure that degradation measured is not due to OOBE
- Signal Antennas
 - GNSS Signals: Passive GNSS Patch Antenna
 - Interference Signals: Passive Horn Antenna

GNSS Signals Used in Testing

Signal
GPS C/A-code
GPS L1 P(Y)-code
GPS L1C
GPS L2 P(Y)-code
SBAS L1
GLONASS L1 C or P
BeiDou B1I
Galileo E1 B/C

U.S. Department of Transportation

Office of the Assistant Secretary for Research and Technology

Chamber Diagram

Office of the Assistant Secretary for Research and Technology

Test Grid

Interference Test Signal Frequencies and Power Profiles (1/2)

U.S. Department of Transportation

Office of the Assistant Secretary for Research and Technology

X: 1680 Y: -10

1800

Interference Test Signal Frequencies and Power Profiles (2/2)

Data Collected

- Data Needed to Develop an ITM for each receiver:
 - $-CNR(s, i, j, \Delta t)$ (here, *s* identifies the GNSS, *i* the SV, Δt is the reporting time increment)
- To the extent possible, additional data to report the state of the receiver at each time step
 - Number of satellites tracked for each GNSS service: $N_{SV}(s, t_j)$
 - Location: $Lat_s(j, \Delta t)$, $Lon_s(j, \Delta t)$, $h_s(j, \Delta t)$ (relative to WGS84 or other Datum)
 - Pseudorange: $R_{s,i}(j.\Delta t)$
 - Carrier phase
 - Cycle slip or loss of carrier phase lock indicator (per satellite)
 - Loss of code and carrier tracking indicator, or inferred loss of tracking in the case when it is not reported by the receiver (per satellite)

- Analyze test data and develop interference tolerance masks for all receivers tested based on 1 dB CNR degradation
- Conduct lab testing on a limited number of receivers to determine how well test results can be reproduced
- Conduct receiver acquisition testing on a limited number of receivers
- Evaluate correlation of 1-dB CNR degradation to other receiver data collected
- Develop use-case scenarios
- Evaluate appropriate propagation models for each use-case scenario
- Develop maximum tolerable transmitter power level as a function of frequency offset

Questions?

Office of the Assistant Secretary for Research and Technology