

SAR/Galileo Service Status European Commission

Pieter De Smet Xavier Maufroid ICG, Vienna, 6 June 2016

Outline

- ★ SAR/Galileo Service Definition
- ★ SAR/Galileo Forward Link Service Overview
 - **★** Infrastructure
 - **★** Performances
- SAR/Galileo Return Link Service Overview
 - **★** Infrastructure
 - **★** Standardization
 - **★** Beacon impacts
- **★** SAR/Galileo Service Roadmap

Outline

- **★** SAR/Galileo Service Definition
- **★** SAR/Galileo Forward Link Service Overview
 - **★** Infrastructure
 - * Performances
- **★** SAR/Galileo Return Link Service Overview
 - **★** Infrastructure
 - **★** Standardization
 - **★** Beacon impacts
- **★** SAR/Galileo Service Roadmap

Article 4 (e) of GNSS Regulation 1285/2013

"4. The specific objectives of the Galileo programme shall be to ensure that the signals emitted by the system established under that programme can be used to fulfil the following functions:

.

(e) to contribute to the search and rescue support service (SAR) of the COSPAS-SARSAT system by detecting distress signals transmitted by beacons and relaying messages to them"

- The Search and Rescue (SAR) Service of Galileo consists of two distinct elements:
 - ★ The Forward Link Alert Service: Contribution to the Cospas-Sarsat MEOSAR Programme:
 - ★ Contributes to MEOSAR Global coverage by providing space and ground segment contribution
 - ★ Contributes to Cospas-Sarsat system by detection/localization data of 406MHz distress beacons
 - ★ The Return Link Alert Service: it provides the users in distress an acknowledgment message informing them that the alert has been detected and located

Outline

- ★ SAR/Galileo Service Definition
- **★** SAR/Galileo Forward Link Service Overview
 - **★** Infrastructure
 - ★ Performances
- **★** SAR/Galileo Return Link Service Overview
 - **★** Infrastructure
 - **★** Standardization
 - **★** Beacon impacts
- **★** SAR/Galileo Service Roadmap

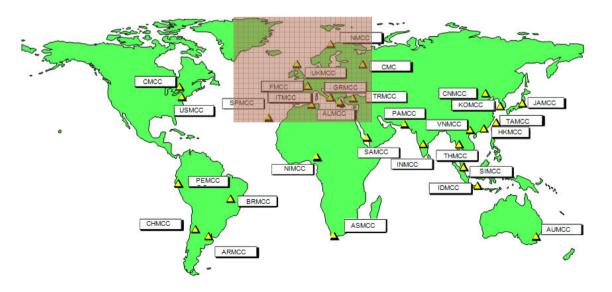
SAR/Galileo Forward Link Service

Contribution to Cospas-Sarsat MEOSAR Programme with an operational infrastructure qualified according to Cospas-Sarsat Standards

Ground Segment Component: 3 EU MEOLUTs in Network

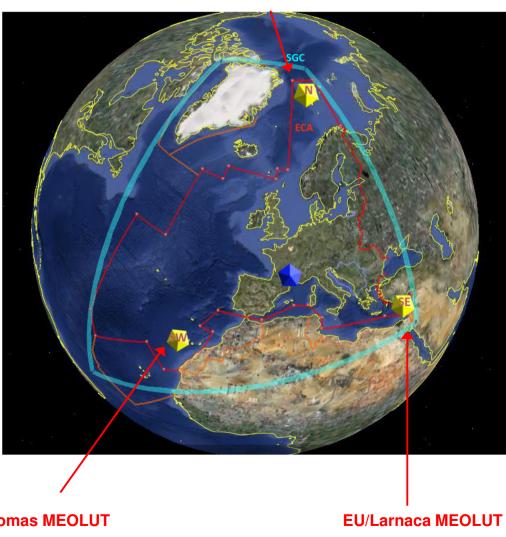
- EU/Maspalomas MEOLUT
- EU/Spitzbergen MEOLUT
- EU/Larnaca MEOLUT
- MEOLUT Tracking Coordination Facility in Toulouse

Space Segment Component: SAR Repeaters on board each Galileo satellite:

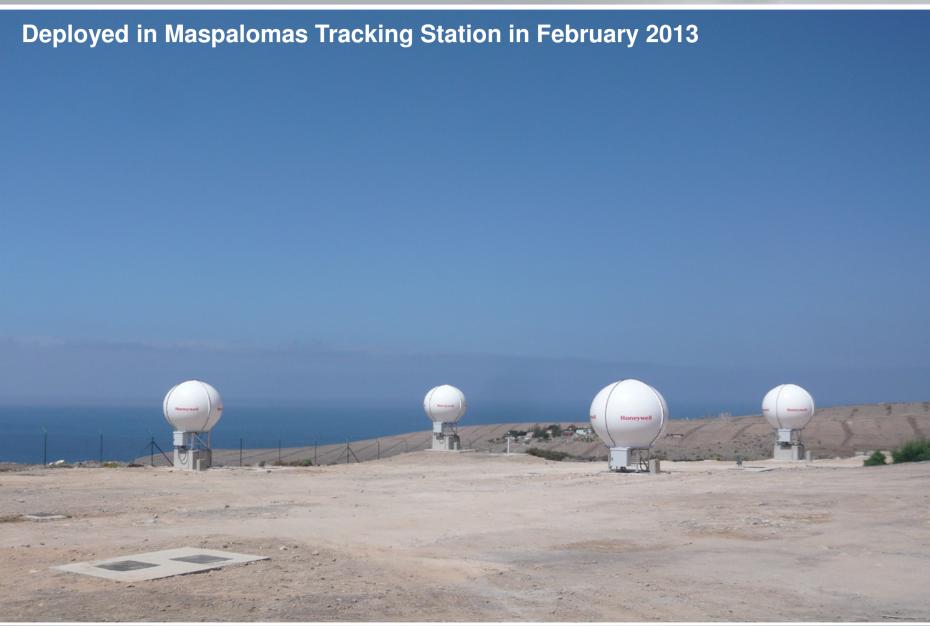

- 2 IOV SARR (No SARR on IOV FM1/FM2)
- 22 FOC SARR (in deployment)

★ SAR/Galileo Forward Link Service Users:

- ★ All Cospas-Sarsat MEOLUTs: MEOLUTs are directly receiving the distress signals relayed by the SARR
- ★ Cospas-Sarsat MCC: All the MCCs which are at least partially within the European SAR Coverage Area of Galileo
- ★ Indirectly: all beacon owners


SAR/Galileo Forward Link Service Ground Infrastructure

- 3 MEOLUTs to cover SAR areas over geographical Europe
 - 1. EU/ MASPALOMAS MEOLUT
 - 2. EU/LARNACA MEOLUT
 - 3. EU/SPITZBERGEN MEOLUT
- Infrastructure compliant with **Cospas-Sarsat Standard**


EU/Spitzbergen MEOLUT

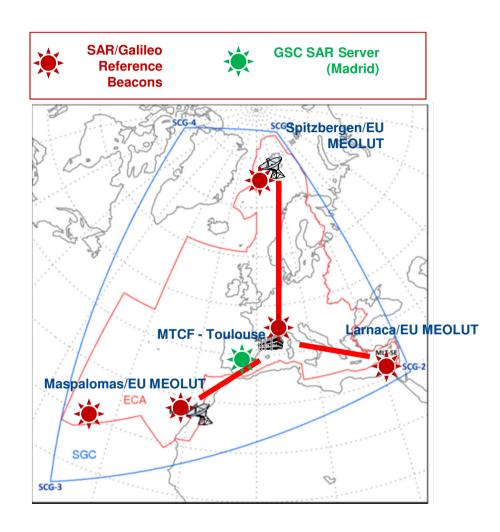
EU/Masplomas MEOLUT

EU/MASPALOMAS MEOLUT

EU/LARNACA MEOLUT

...With additional enhancements

MEOLUT Tracking Coordination Facility (MTCF)


- **★**Coordinates the tracking of the MEOLUTs to improve the performances
- ★Allow exchange of data with other MEOLUTs

★ 5 MEOSAR Reference Beacons

★Monitoring the performances of the services

★ GSC SAR Server

★Distribution of orbit data to MEOSAR users

6 June, 2016 The European GNSS Programmes 13

SAR/Galileo Forward Link Space Segment

- Search and Rescue Repeaters on board each Galileo satellite*
- Main Characteristics:
 - **★Reception: RHCP in uplink frequency 406.05 MHz, G/T ~ -13 dB/K**
 - **★Transmission: LHCP in downlink frequency of 1544.1 MHz, EIRP ~17dBW**
 - **★Several operating modes**
 - **★** Narrow Band (50kHz) / Wideband (90kHz)
 - ★ Automatic Level Control (ALC) / Fixed Gain Mode (FGM)
 - **★ Default Mode: ALC 90kHz**
- ★ The SAR Repeaters are being commissioned following Cospas-Sarsat Standard
- **★** Full description provided under Cospas-Sarsat T.16 Document

^{* (}except IOV FM1/FM2)

SAR/Galileo Forward Link Service Space Segment

SAR Repeater ·SARR 406 MHz Rx **Alert Service** L-band Tx

SAR/Galileo Service Space Segment Deployment

Cospas-Sarsat Satellite ID	GALILEO Satellite Name	Orbital Slot	Launch ID	Launch Date	Availability Date for SAR	CS Commissioning Report			
411	GSAT 0101	B5		21 October 2011	2012	No SARR; only RLS			
412	GSAT 0102	В6	L1	21 October 2011	2012	16 ; only RLS			
419	GSAT 0103	C4		12 October 2012	aber 21	June 2013			
420	GSAT 0104	C5	L2	12 October 2017	oten 2016	June 2013			
414	GSAT 0202	Ecc		"e by 3"	Jan 2016 - April 2016	JC-September 2016			
418	GSAT 0201	Ecc	13	ate august 2014	Jan 2016 - April 2016	JC-September 2016			
426	GSAT 0203	CAR	Rep	27 March 2015	January 2016	JC-September 2016			
422	"iona		L4	21 October 2011 21 October 2011 12 October 2012 12 October 2015 22 March 2015 23 March 2015 10 September 2015 17 December 2015	January 2016	JC-September 2016			
424	Z205	A5	15	10 September 2015	December 2015	JC-September 2016			
1201	GSAT 0206	A8	LS	10 September 2015	December 2015	JC-September 2016			
409	GSAT 0209	C2	L6	17 December 2015	April 2016	JC-September 2016			
408	GSAT 0208	C7	20	17 December 2015	April 2016	JC-September 2016			
410	GSAT0210	A2	L7	24 May 2016	September 2016	Council December 2016			
411	GSAT0211	A6	L/	24 May 2016	September 2016	Council December 2016			

6 June, 2016

Outline

- SAR/Galileo Service Definition
- **★** SAR/Galileo Forward Link Service Overview
 - Infrastructure
 - * Performances
- SAR/Galileo Return Link Service Overview
 - Infrastructure
 - **Standardization**
 - **Beacon impacts**
- **★** SAR/Galileo Service Roadmap

SAR/Galileo Return Link Service

- ★ Unique feature of Galileo to provide return channel to the distress beacon for multiple purposes (distress acknowledgment, beacon activation, beacon control...)
 - ★Currently under deployment for providing an acknowledgment service to the beacon through a Return Link Message (RLM)
 - ★ Development in coordination with Cospas-Sarsat for full integration into the Cospas-Sarsat MEOSAR system
- ★ Use the Galileo L1 Navigation Message to broadcast the acknowledgment messages

SAR/Galileo Return Link Acknowledgment Service

- ★ During the development process two types of acknowledgments are considered in the Return Link Service:
 - **★** Acknowledgment Type 1 (also called system acknowledgment):

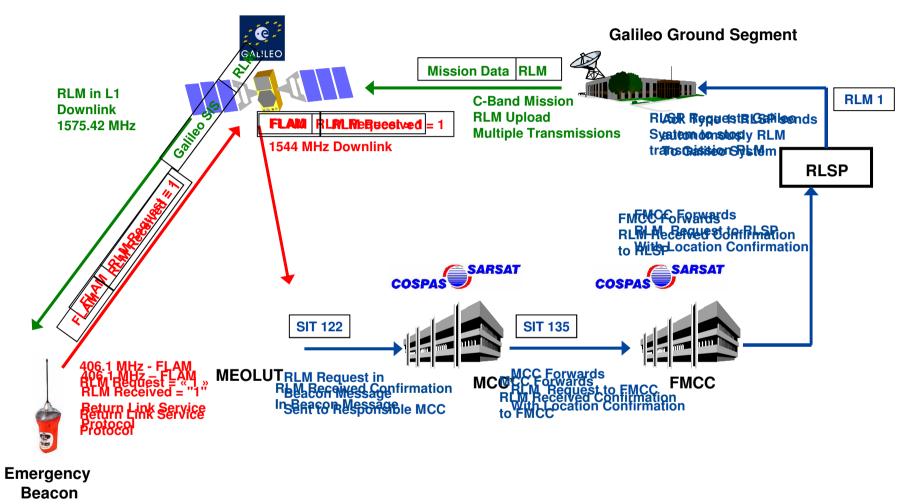
The Galileo system is the solely responsible for the automatic transmission of a Return Link Message (RLM) to the emitting beacon once the alert has been detected and located

★ Acknowledgment Type 2 (also called RCC acknowledgment):

The Galileo system sends the RLM to the emitting beacon once it has received the authorization of the RCC (Rescue Coordination Center). This acknowledgment would inform the user that the distress has been received by the RCC.

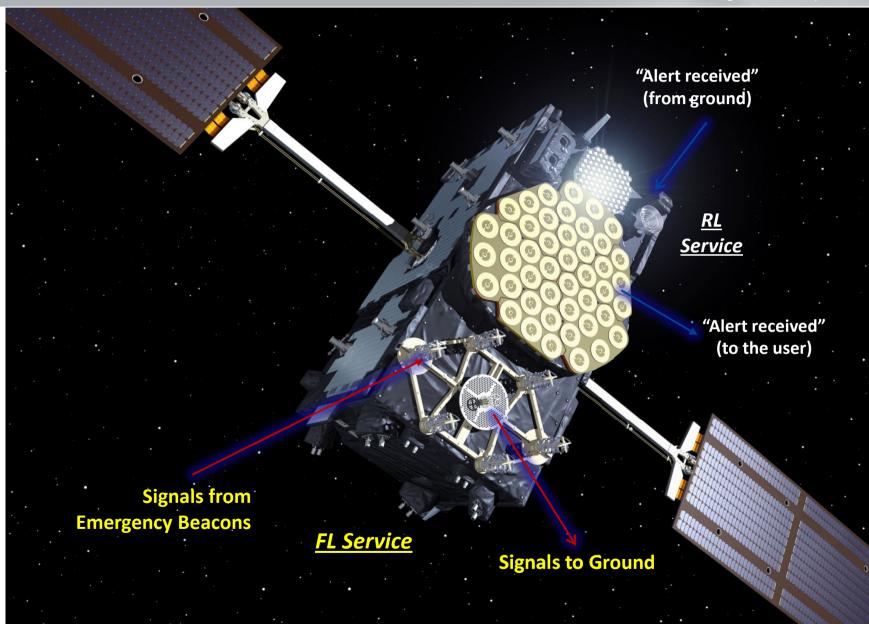
Coordination with IMO on the use of Return Link Service

- ★ In March 2012, the European Commission participated to the COMSAR 16 (IMO) and presented a paper on the Return Link Service
 - **★** Outcome of COMSAR 16:


6.22 The Sub-Committee endorsed:

.4 the acceptability of the Return Link Message (RLM) Type-1 including the optional inclusion of this particular functionality within distress beacons; and

.5 the further consideration of the complex matter of RLM Type-2 messages by the ICAO/IMO Joint Working Group.


Return Link Acknowledgment Service End-to-End Loop (RLM Type-1)

SAR/Galileo RLS Space Segment Component

SAR/Galileo RLS Ground Segment: Return Link Service Provider (RLSP)

- The RLSP is the Galileo Service Facility in charge of the generation of the Return Link Messages (RLM)
- Interface with the Galileo Ground Segment for uplinking of RLM
- Interface with the Cospas-Sarsat system (through French MCC) for receiving RLM requests (information of activated distress beacons with RLM capability)
- ★ The facility is located in the SAR/Galileo Service Centre, Toulouse France
- Operated by the SAR/Galileo Data Service Provider (CNES)
- Procurement of the RLSP facility is launched; deployment foreseen at the end of 2017

- Return Link Message Request (RLM Request)
 - ★ Message sent by the distress beacon (specific RLS protocol on the 406 MHz uplink signal) to the Return Link Service Provider (RLSP) to indicate that it has a Return Link capability
 - ★ The protocol is defined for the current generation (T.001) of beacons and is being adapted for the next generation of Cospas-Sarsat beacons
 - Protocol Applicable as from January 2017
 - **★** The RLM request is received at the RLSP through the Cospas-Sarsat network
 - ★ Is included as part of the SIT message (SIT135)
 - ★ Follows a specific routing through the FMCC which interfaces with RLSP

Return Link Service Implementation in Beacons - 2

★ Return Link Message (RLM)

- ★ Message sent by the Galileo system to the beacon through the Galileo L1 signal (1575.42 MHz)
- ★ Defined in Galileo Signal in Space ICD, version 1.2 (May 2014)
- ★ Two types of RLMs: short RLM (80 bits) and long RLM (160 bits)

		Beacon ID	Message Code				Short-RLM Parameters Field																
Return Link Service		60					16																
To. To.		70	Bit 60	Bit 61	Bit 62	Bit 63	Bit 64	Bit 65	Bit 66	Bit 67	Bit 68	Bit 69	Bit 70	Bit 71	Bit 72	Bit 73	Bit 74	Bit 75	Bit 76	Bit 77	Bit 78	Bit 79	Bit 80
Acknowledgment Service Type-1	15 HEX ID			0	0	0	1	1	0	Spares								Parity					
Test Service		15 HEX ID		1	1	1	1								Spares								Parity

★ RLM reception at the distress beacon

- ★ The RLMs message will be sent through 2 satellites in visibility of the beacon. The choice of the satellite is made by the RLSP based on the beacon location information and perceived link quality
- ★ The beacon cannot detect which satellites will be used for RLM transmission
 → needs to track all Galileo satellites in view
- ★ The GNSS receiver in the beacon must be maintained ON during certain periods to ensure the reception of the RLM (activation sequence is described in Cospas-Sarsat Documentation)
- ★ Upon Reception of the Return Link Message, the Beacon will modify its forward link alert message (FLAM) to indicate to the system that the RLM has been well received (to trigger the end of the RLM transmission by Galileo)

Return Link Service Implementation in Beacons - 4

Standardization Activities in IEC

★ Interface between the GNSS receiver and distress beacon is standardized: IEC has developed a new IEC 61162-1 NMEA sentence for the RLS message

National Marine Electronics Association

International Marine Electronics Association

Technical Bulletin

Amendment to NMEA0183 Version 4.10 # AT 0183 20150806

NMEA 0183 Amendment

An amendment is a technical specification that is publically available and will be added to this version at a later date altering this version to a new version.

This document contains the final approved NMEA 0183 / IEC 61162-1 sentence for:

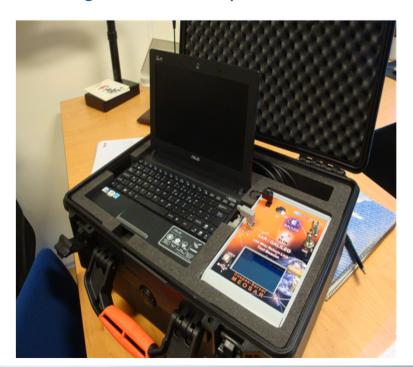
• RLM – Return Link Message

This Amendment had been reviewed and approved by NMEA and IEC TC80 Working Group 6 with assistance from Cospas Sarsat Council.

RLM - Return Link Message

The RLM sentence is used to transfer a Return Link Message received by a Return Link Service (RLS) compatible GNSS Receiver from a Cospas-Sarsat recognized Return Link Service Provider (RLSP) to an RLS compliant Cospas-Sarsat 406 MHz Beacon.

The RLM sentence supports communications to an emitting beacon once a distress alert has been detected, located and confirmed. The communications may include acknowledgement of the alert to the emitting beacon as well as optional text messages, and may also include remote beacon configuration and testing.


The European GNSS (Galileo) Open Service Signal In Space Interface Control Document Issue 1.2 (Galileo OS SIS ICD) defines the content and structure of Fields 1, 3, and 4.

This sentence cannot be queried. All fields in the RLM sentence cannot be null.

SAR/Galileo Return Link Service Testing

- **★** IOV Test Campaign executed from October 2013 to March 2014
 - **★** RLS Capacity (GMS + Satellites)
 - ★ RLM delivery time by the GALILEO System and Global coverage
 - ★ End-to-end (Forward + Return Link) Loop
- **★** Cospas-Sarsat MEOSAR D&E Test Campaign Operational Test #5
 - ★ Large scale test campaign involving several Cospas-Sarsat MCCs
 - **★** Beacon spread globally
 - ★ Q4 2016

Outline

- SAR/Galileo Service Definition
- **★** SAR/Galileo Forward Link Service Overview
 - Infrastructure
 - * Performances
- **★** SAR/Galileo Return Link Service Overview
 - Infrastructure
 - Standardization
 - **★** Beacon impacts
- **★** SAR/Galileo Service Roadmap

Towards SAR/Galileo Initial Service Declaration

Galileo Initial Service Declaration in Sept. /Oct. 2016

Readiness of the SAR/Galileo Forward Link Service Infrastructure

- Contribution to Cospas-Sarsat MEOSAR Early Operational Capability (EOC) phase
 - **★** Declaration of EOC by Cospas-Sarsat Council expected in December 2016
- ★ Based on commissioned infrastructure: 10 SART and 3 MEOLUTs
- Service Operations managed by the CNES (acting as SAR/Galileo Data Service Provider)

SAR/Galileo Initial Service Main Key Performances Indicators

KPI	Description
KPI #1	Detection Service Availability: 99%
KPI #2	 Quality of the Localization Service 98% of localization in 5 km 80% of localization in 2 km Assessed in single burst and after 10 minutes
KPI #3	Per MEOLUT Availability • 97.6% in Nominal mode • 99.9% in Nominal or Degraded Mode

Return Link Service Roadmap

- ★ Mid-2016: Kick-Off Operational RLSP Development
- ★ End 2016: Pre-Operational RLSP available for Cospas-Sarsat Test Campaign on RLS
- ★ Mid-2017: Deployment of operational RLSP in SAR/Galileo Service Center (CNES, Toulouse)
- End-2017: Connection of operational RLSP to Galileo Operational Chain for system validation and qualification
- Beginning-2018: Operational RLSP available for testing purposes (RLS Test Protocol)
- ★ Mid-2018: Start of Initial Return Link Service

SAR/Galileo Service Provisioning Milestones

2016 Initial Service


- Initial Forward LinkDetection andLocalizationCapability
- Infrastructure
 qualified under
 Cospas-Sarsat
 specifications
- Use of mix of
 Galileo L-Band and
 GPS S-Band
 transponders
- ★ 10 SART

2018 Enhanced Service

- Improved Forward
 Link Detection and
 Localization
 Capability
- Initial Return Link Service
- Use of mix of
 Galileo L-Band and
 GPS S-Band
 transponders
- ★ 20 SART
- Increased Galileo ground coverage:South Indian Ocear

2020 Full Service

- Full Forward LinkDetection andLocalizationCapability
- ★ Full Return Link Service
- Service can be based on Galileo L-Band transponders only
- ★ 24 SART (+ 6 active Spares)

Further evolutions of SAR/Galileo Service

Forward Link Service:

- **★** Extension of the SAR Ground Segment to further contribute to Cospas-Sarsat MEOSAR global coverage
- **★** Compatibility with Second Generation Beacons
- Return Link Service: additional services
 - **★** RLS Type-2
 - **★** Remote Beacon Activation
 - **★** Two-way messaging

- ★ A substantial infrastructure and operations have been procured by the Galileo Programme to support the Search and Rescue applications, in particular in support to Cospas-Sarsat MEOSAR Programme (close to 100M€ over 10 years)
- A significant step will be achieved with the Initial Service Declaration in 2016

- ★ The Return Link Service implementation is well on its way and will provide significant added value to the SAR Service
- Strong interaction between user community, beacon manufacturers and the Galileo Programme is required in order to develop the right features