

ICG SSV - Simulation Phase 2 Link budget setup

Werner Enderle

05/06/2016

ESA UNCLASSIFIED - For Official Use

European Space Agency

To be defined:

- Antenna pointing direction (nadir, zenith, ...) or
- Antenna location and Attitude law

ESA UNCLASSIFIED - For Official Use

= II 🛌 == + II = 🚝 = II II = = = 📰 🛶 🚺 II = = II 💥 🙌

GNSS antenna pattern

esa

Realistic GPS IIR-M antenna pattern

GPS L1 & L2 reference:

The GPS Block IIR/IIR-M Antenna Panel Pattern, LMOC, Iss. Rev. 1.0, Feb. 2014

Simple GPS (L1) antenna pattern (normalized)

No signal is considered as emitted outside the off-boresight cut-off angle

ESA UNCLASSIFIED - For Official Use

Link budget figures

Received $P_r = EIRP + L_t + L_S + G_r + L_A + G_A + L_C + L_{sys}$ Power

Received C/N₀ = EIRP + L_t + L_s + G_r + L_A + L_C + L_{sys} - 10 $log_{10} T_{sys}$ - 10 $log_{10} k$

Link budget figures

Received $P_r = EIRP + L_t + L_s + G_r + L_A + G_A + L_C + L_{sys}$

Received C/N₀ = EIRP + L_t + L_s + G_r + L_A + L_C + L_{sys} - 10 $log_{10} T_{sys}$ - 10 $log_{10} k$

European Space Agency

Link budget figures

Parameter	Proposed for usage	Value	Reference	Comments
EIRP	\checkmark	To be calculated	SSV Booklet	Constellation-wise specific
L _t	✓	0 dB within off-boresight cut-off angle	Assumption	Within the off-boresight cut-off angle the gain is constant, outside there is no signal
L _S	✓	$FPSL(dB) = 20 \log_{10}\left(\frac{\lambda}{4\pi r}\right)$	By definition. Wavelength λ will be included in the booklet	Free path free-space loss, function of GNSS-user distance r and the signal wavelength λ
G _r	\checkmark	Patch antenna	We should use the values from an agreed data sheet	Receiver antenna gain, as per data sheet
L _A	×	N/A	Assumption	Not considered
G _A	×	N/A	Assumption	Not considered
L _c	×	0 dB	Assumption	Not considered
L _{sys}	×	0 dB	Assumption	Not considered
T _{sys}	\checkmark	To be agreed within the project	Assumption	System Temperature
P_r acq.	(✓)	See following tables	Agreed figures for GEO	Acquisition Received Power threshold
P_r track.	(√)	See following tables	Agreed figures for GEO	Tracking Received Power threshold
C/N_0 acq.	\checkmark	20/25/30 dBHz	Values to be agreed	Acquisition Received SNR threshold
C/N_0 track.	(√)	N/A	Values to be agreed	Tracking Received SNR threshold

Satellite-User range computation as a function of θ

ESA UNCLASSIFIED - For Official Use

Range and FSL Equation

esa

Range between GNSS satellite and user satellite

$$R(\theta) = R_{SAT} \cdot \cos(\theta) + \sqrt{R_{User}^2 - R_{SAT}^2 \cdot \sin^2(\theta)}$$

Derived Free Space Loss

$$FSL(\theta) = -20 \log_{10}\left(\frac{4\pi R(\theta)f}{c}\right) = 20 \log_{10}\left(\frac{\lambda}{4\pi R(\theta)}\right)$$

ESA UNCLASSIFIED - For Official Use

User Received Power threshold

GPS signals	Minimum Received Civilian Signal Power (GEO)
L1 C/A	-184.0 dBW
L1C	-182.5 dBW
L2 (L2C or C/A)	-183.0 dBW
L5 (I5 or Q5)	-182.0 dBW

Galileo signals	Minimum Received Civilian Signal Power (GEO)
E1B/C	-182.5 dBW
E6B/C	-182.5 dBW
E5b	-182.5 dBW
E5ABOC	-182.5 dBW
E5a	-182.5 dBW

Glonass signals	Minimum Received Civilian Signal Power (GEO)
L1	-180 ÷ -185 dBW
L2	-177 ÷ -184.4 dBW
L3	-176 ÷ -184 dBW

BeiDou signals	Minimum Received Civilian Signal Power (GEO)
B1 (MEO)	-183.1 dBW
B1 (GEO/IGSO)	-183.3 dBW
B2 (MEO)	-182.0 dBW
B2(GEO/IGSO)	-182.4 dBW
B3 (MEO)	-183.8 dBW
B3 (GEO/IGSO)	-184.3 dBW

QZSS signals	Minimum Received Civilian Signal Power (GEO)
L1 C/A	-185.3 dBW
L1C	-185.3 dBW
L2 C	-188.7 dBW
L5 (I5 or Q5)	-180.7 dBW

IRNSS signals	Minimum Received Civilian Signal Power (GEO)
L5	-186.51 dBW
S	-189.78 dBW

ESA UNCLASSIFIED - For Official Use

Agreed figures for GEO, as per ICG SSV Booklet

Conclusions for Phase 2

- 1. The proposed, simplified Link Budget calculation and in particular the calculation of the EIRP values for each constellation must be discussed and agreed between all parties involved.
- 2. The Link budget parameters must be discussed and agreed in particular the acquisition and tracking SNR values.
- 3. User-antenna pointing direction, location and satellite attitude needs to be discussed and agreed for specific missions.

To be defined:

- User-Antenna pointing direction (nadir, zenith, ...) or
- User-Antenna location and attitude law

ESOC Proposal:

- Attitude: Nadir pointing GNSS satellite
- Antenna location: always using 2 antennas (1 nadir and 1 zenith pointing)

ESA UNCLASSIFIED - For Official Use

Initial thoughts for Phase 3

- 1. Some basic principles should be agreed:
 - User-antenna pointing direction, location of antenna on satellite and satellite attitude needs to be discussed and agreed for specific missions

ESOC Proposal:

- User satellite attitude: Nadir pointing
- User antenna location: always using 2 antennas (1 nadir and 1 zenith pointing)
- Realistic space user antenna pattern
- ESOC Proposal:
- Use of batch antenna data sheet, because of conservative approach
- 2. Reference missions should cover wide range of applications
 - Scientific missions
 - Weather satellites
 - Earth observation missions

• ...

ESA UNCLASSIFIED - For Official Use

= II 🛌 == + II == 🚝 == II II == == 🖽 🛶 🔯 II == II 💥 IV

Initial thoughts for Phase 3

1. Definition of 4-5 general KPIs and a set of mission drivers for the reference missions

ID	Mission	Mission drivers	GNSS KPIs
1	Scientific mission	 Orbit accuracy Quality of GNSS data Availability of GNSS data at specific mission phases 	 Number of visible GNSS sv Time where 1 GNSS sv is visible Time where 4 or more GNSS sv are visible Quality of relative geometry
2	Weather satellite	 Availability of service On-board autonomy GNSS is used in user sat AOCS 	 Max outage time of 1 sv Number of visible GNSS sv Min time of 4 visible GNSS sv

ESA UNCLASSIFIED - For Official Use

ESOC mission proposal for phase 3: Proba-3

Proba-3 Orbital parameters

Apogee altitude	60,530 km
Perigee altitude	600 km
Semi-major axis	36943 km
Eccentricity	0.8111
Inclination	59 deg
Argument of perigee	188 deg
Right ascension of ascending node	152 deg
Orbital period	19.6 hours

ESA UNCLASSIFIED - For Official Use