

Real-time ionosphere monitoring by three-dimensional tomography over Japan

^{1*}Susumu Saito, ^{2,†}Shota Suzuki, ²Mamoru Yamamoto, ³Chia-Hun Chen, and ⁴Akinori Saito ¹Electronic Navigation Research Institute, Japan ²Research Institute of Sustainable Humanosphere, Kyoto University, Japan ³National Cheng Kung University, Taiwan ⁴Department of Science, Kyoto University, Japan

> [†]Now at SQUARE ENIX Co. Ltd. ION GNSS+2016, Portland, 13-16 September 2016

Ionospheric density profile measurements

 3-D ionospheric density profiles are very useful for radio applications (such as communications or GNSS augmentation) as well as ionospheric sciences.

Ionosonde: Classic simple device Bottomside profiles only

ENRI

Incoherent scatter radar:
 Very powerful, various
 parameters can be derived.
 Extremely expensive

ION GNSS+2016, Portland, 13-16 September 2016

GNSS tomography

 GNSS tomography is a powerful technique to reconstruct 3-D ionospheric density profiles from total electron content (TEC)measurements.

 Objectives: Make 3-D ionospheric density profiles available by tomography in real-time

Real-time ionosphere monitoring

Real-time 2-D ionosphere disturbance monitoring [Saito et al., ION ITM 2014]

- ENRI has developed a real-time 2-D ionospheric disturbance monitoring system using real-time data from 200 selected GEONET stations. [Saito et al., ION ITM 2014]
 - can be expanded to a real-time 3-D ionospheric tomography system

ION GNSS+2016, Portland, 13-16 September 2016

Tomographic reconstruction volume

Realtime tomography results

Validation results

ION GNSS+2016, Portland, 13-16 September 2016

Real-time web interface

- Preliminary real-time web interface
 - On-demand plotting of zonal, meridional, and horizontal cross sections and vertical profile

http://www.enri.go.jp/cnspub/tomo3/plotting.html

ION GNSS+2016, Portland, 13-16 September 2016

2016年4月からリアルタイムサービスを開始 http://www.enri.go.jp/cnspub/tomo3/

Potential use of tomography

- Ionospheric science
 - 3-D structure of traveling ionospheric disturbances (TIDs)
 - Ionospheric climatology with tomography of archived GEONET data
- Engineering application
 - Better ionospheric correction for single-frequency GNSS
 - HF radio wave propagation prediction

Summary

- Real-time 3-D ionospheric tomography system over Japan has been developed.
 - Every 15min with about 10min latency
- Tomography results are validated with independent measurements
 - In good agreement
 - More validation works planned
- Scientific and engineering applications are provisioned.

Acknowledgment: This work is supported by JSPS Grant-in-Aid for Challenging Exploratory Research JP2663018

A new ionospheric storm scale (I-scale)

"A new ionospheric storm scale based on TEC and foF2 statistics", M. Nishioka, T. Tsugawa, H. Jin and M. Ishii, accepted to *Space Weather*

Motivation

TEC in the Japanese sector during the St Patrick's day storm Observation median of 27 days

- Ionospheric storms have no clear definition.
- Ionospheric parameters largely depend on local time, season, and latitude.
- It is necessary to investigate the ionospheric parameters statistically in order to define an universal ionospheric scale.

Data set and methodology

[Data Set]

> 15-minute TEC for 18 years from 1997 to 2014 (TEC_{obs}).

[Methodology]

Percentage deviation of TEC from the reference, P_{TEC}, is used to describe ionospheric state.

 $\mathsf{P}_{\mathsf{TEC}} = \frac{\mathsf{TEC}_{\mathsf{obs}} - \mathsf{TEC}_{\mathsf{ref}}}{\mathsf{TEC}_{\mathsf{ref}}}$

- > The reference value, TEC_{ref} is defined as a median of TEC_{obs} at the same local time and latitude in the past 27 days.
- Since distributions of P_{TEC} are different among different seasons, local-times, and latitudes, P_{TEC} is normalized by σ . The normalized P_{TEC} is used to determine an Iscale. It is defined by setting thresholds to the normalized numbers to seven categories:

I0: Quiet state I_P1, I_P2, I_P3: moderate, strong, severe positive storms I_N1, I_N2, I_N3: moderate, strong, and severe negative storms

Distribution of P_{TEC} (29°N, Feb-Apr, 20JST)

JpGU@Makuhari, Chiba, 22 May 2016 P-EM04 Space Weather, Space Climate, and VarSITI, 09:30-09:45

Solar Flare Prediction with Vector Magnetogram and Chromospheric Brightening using Machine-learning

O N. Nishizuka¹, Y. Kubo¹, K. Sugiura², M. Den¹,S. Watari¹, M. Ishii¹

出典 www.google.co.jp

National Institute of Information and Communications Tech. (NICT) ¹Applied Electromagnetic Research Institute, Space Environment Lab. ²Advanced Speech Translation Research and Development Promotion Center (ASTREC), Advanced Translation Tech. Lab. AlphaGo Deeplearning

Daily Space Weather Forecasts

Manual Prediction: Hit rate~60-80%

True Skill Score: TSS~0.5 (-1.0 < TSS < 1.0)

Flow chart of Flare Prediction System

Machine-Learning

(1) To construct algorithms that can learn from and automatically make classification or prediction on known/unknown data.

(2) To classify and predict the complex data, beyond the human processing capacity.

Statistical map of Solar features before Flares

Prediction Results & Evaluation

• We divided the database of features randomly into training/test datasets with the ratio of 70 : 30. We evaluated the prediction results with TSS.

- We achieved TSS = $0.927 \rightarrow$ world top-class score.
- In our model, kNN showed better score than SVM, ERT.

Operational Prediction (week shuffle)

Magnetic filed of sunspots does not change so much within 24 hours, so it's not good to divide the data just before a flare into training/test data sets. Therefore, we adopted the week shuffle for operation evaluation.

 In operational model, we achieved TSS = 0.907 cf) Bobra & Couvidat'15 TSS=0.76, Muranushi+'15 TSS=0.75

 \rightarrow world top-class !

(NN is the best among the three machine-learning meth

kNN is the best, among the three machine-learning methods.

Importance Ranking of Features (from ERT)

Ranking		Features	Importance	
	1.	Xhis	0.0519	•Flare history (total, 1day),
	2.	Xmax1d	0.0495	• Max X-ray intensity 1 day before
	3.	Mhis	0.0365	
	4.	TotNL	0.0351	•Total length of Neutral Lines
	5.	Mhis1d	0.0342	•Number of NLs
	6.	NumNL	0.0341	 Unsigned magnetic flux,
	7.	Usflux	0.0332	•averaged/max Bz
	8.	CHArea	0.0235	r,
	9.	Bave	0.0230	Chromospheric Bright Area
	10.	Xhis1d	0.0224	
	11.	TotBSQ	0.0199	 Total magnitude of Lorentz force
	12.	VUSflux	0.0196	 Mean angle of field from radial Sum of the modules of the net current per polarity
	13.	Bmax	0.0193	
	14.	MeanGAM	0.0179	
	15.	dt24SavNCPP	0.0171	

Total 50 features