Summary of the **2011 IAA Planetary Defense Conference**

William Ailor, Ph.D.

The Aerospace Corporation
Co-Chair, 2011 IAA Planetary Defense Conference
William.h.ailor@aero.org

Presented at the 54th Session of the United Nations Committee on the Peaceful Uses of Outer Space

8 June 2011

2011 IAA Planetary Defense Conference

- 9-12 May, 2011, Bucharest, Romania
- 19 sponsoring organizations
- Over 160 participants

This presentation provides overview, highlights and preliminary recommendations from conference

http://www.spacegeneration.org/

Host: Romanian Space Agency

Organizing Committee

V. Adimurthy **Indian Space Research Organization/Department of Space The Aerospace Corporation** William Ailor* Ivan Bekey **The Planetary Society Bruce Betts** Mark Boslough Sandia National Laboratory Juan-Luis Cano **Deimos Space** Sergio Camacho **European Space Agency** Ian Carnelli A.C. Charania **SpaceWorks Commercial** Pingyuan Cui Institute of Deep Space Exploration, **Beijing Institute of Technology** Jean-Michel Contant **International Academy of** Astronautics (IAA) **Richard Crowther Rutherford Appleton Laboratory** Queen's University, Belfast Alan Fitzsimmons Andres Galvez **European Space Agency** Mariella Graziano **GMV** Instituto de Astrofísica de Andalucía -Pedro J. Gutiérrez **CSIC** Alan Harris German Space Agency (DLR) Alan W. Harris **Space Science Institute European Space Agency** Dario Izzo

Lindley Johnson NASA NEO Observation Program Executive **Astronaut, Member B612 Foundation** Tom Jones Alex Karl Space Generation Advisory Council **Detlef Koschny SSA Near-Earth Object Segment** Manager, European Space Agency Claudio Maccone **International Academy of** Astronautics (IAA) The Aerospace Corporation Nahum Melamed Patrick Michel Côte d'Azur Observatory NASA Lunar Science Institute **David Morrison** Marius Piso **Romanian Space Agency Romanian Space Agency Dorin Prunariu Rusty Schweickart** Chairman, ASE-NEO Committee Richard Tremayne-Smith* Giovanni Valsecchi **IASF-Roma, INAF** Frans von der Dunk **University of Nebraska-Lincoln** Secure World Foundation

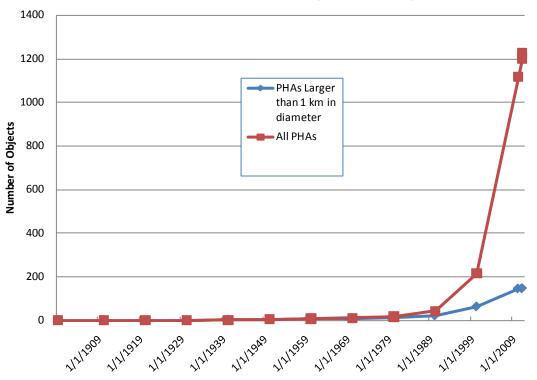
Brian Weeden Secure
Bong Wie Iowa S
Ray Williamson Secure
Don Yeomans Manag

Iowa State University Secure World Foundation Manager, NASA Near-Earth Object

Program Office

^{*}Conference Co-Chair

Topics Discussed


- Current state of knowledge on Near Earth Objects (how many, physical characteristics, orbits, current limitations, current risk, etc.)
- Consequences of an impact (tsunami, NEO size vs. consequence, economic impact, past events)
- Techniques for deflecting or mitigating a threatening NEO (kinetic impact, gravity tractor, explosive devices, others)
- NEO deflection mission and campaign design (launch requirements, cost, timelines, new tools)
- Political, policy, legal framework for planetary defense
- Increasing public awareness
- Current national and international activities supporting planetary defense

How many have been detected?

Number of Known Potentially Hazardous Objects

Source: http://neo.jpl.nasa.gov

US Congressionally mandated effort to find and catalog 90% of NEOs larger than 140 meters by 2020

Comets ~ 1% of overall threat Orbits of comets difficult to predict accurately

Definitions:

NEO: Near Earth Object:--Perihelia <1.3 AU

PHO: Potentially hazardous asteroid or comet--pass within 0.05 AU of Earth's orbit

0.0.0

PHA: Potentially hazardous asteroid

Highlights (1 of 8)

Threats

- No threats yet identified for this century from objects larger than 1km
- Recognition that most frequent damaging threat is from smaller NEOs (e.g., less than 50 m diameter)
- Approximately 350 NEOs discovered with small but non-zero probability of impact this century

Highlights (2 of 8)

Threats (concluded)

- Two known objects with diameters over 100m have impact probabilities of ~1/4000 in the 2050 timeframe (impact energy >100 MT)
- Recognition that Tunguska-class disaster could currently occur with no or little warning given available search and detection assets
- New wide sky search systems could provide 1-3 month warning time for 30-50m diameter object (Tunguska-class)

Highlights (3 of 8)

Discovery and Characterization

- Estimate that there are 990±35 NEOs greater than 1km in diameter
- ~80% of objects larger than 140 m but smaller than 1KM are undiscovered
- Funding increased for discovery, tracking resources (e.g., funding provided by the European Commission, NASA support for Arecibo)

Highlights (4 of 8)

Discovery and Characterization (concluded)

- Making significant progress on discovering NEOs
 >300 m in diameter (~45% completion)
- Increased understanding of keyholes and how deflection efforts vary if act before or after keyhole passage
- Potential for human missions to gather data that will minimize uncertainty for planetary defense efforts

Highlights (5 of 8)

Preparing for Action

- Increasing international recognition of threat of NEO impacts
- UN COPUOS (Action Team 14) developing framework for international decision-making and coordinated action in event threatening object discovered

Highlights (6 of 8)

Public Education

- New interactive web tools being developed to help public understand mission design
- A survey of students indicates interest in asteroid impacts, planetary defense
- Suggestion that topics of past impacts and planetary defense might be included in the geography curriculum in schools, be highlighted at planetariums, and also include societal implications of an impact

Highlights (7 of 8)

Deflection and Disruption

- Characterization of deflection/disruption techniques advancing
- Use of nuclear devices discussed as a necessary mitigation technique for objects discovered with short warning before impact and for larger objects
- Proposal that "kits" of available parts would expedite fabrication of deflection or disruption payloads

Highlights (8 of 8)

Civil Defense

- Civil defense (evacuations, etc.) should include responses to the possibility of objects discovered with short warning times
- Public understanding of the NEO risk and effects can be increased via "teaching moments"
- Increase focus on civil defense/emergency management issues at future conference

Recommendations (1 of 3)

- Develop deflection/disruption options, civil defense plans for the most probable impact threats of smaller NEOs with a short warning times
- Conduct flight validation/demonstration of key technologies for deflection/disruption options
- Encourage other nations to participate in planetary defense and present status at future conferences
- More governments should make funds available for planetary defense studies and civil defense exercises
- Put a sensor interior to Earth's orbit to discover NEOs with Earth-like and interior orbits and orbits with perihelia that take them close to the sun

Recommendations (2 of 3)

- Conduct more surveys of public opinions and use these to guide public education
- Examine how an airburst over water might couple with ocean surface to lead to a tsunami
- Examine impact energy transport into the atmosphere and resulting short and long-term effects
- Use teachable moments (November 2011 pass of object 2005 YU55*) to inform the public of the risk and how a mitigation effort might evolve

* 400m Diameter asteroid; will pass within the orbit of the Moon on November 8, 2011

Recommendations (3 of 3)

- Consider system of university and amateur telescopes that could increase follow-up after new discoveries, detect short warning threats
- Determine what resources should be maintained over the long term to assure adequate deflection/disruption/civil defense actions are available when required
- Consider quick reassignment of general purpose missions to planetary defense for short warning time threats
- Pay attention to and resolve related policy and legal issues
- Work to better leverage funding to NASA, ESA, Russian, other space efforts for progress on planetary defense-related programs
- Continue evolution of framework for international decisions and coordinated action

Summary

- Planetary defense is an international issue
- 2011 IAA Planetary Defense Conference provided the most current information on NEO hazards, options for mitigation and related issues
- Mitigating a threat may require
 - Decisions and agreements by the world community
 - Coordinated actions by space-faring nations
 - Resolving related legal & policy issues
 - Planning for NEO-related disasters in civil defense exercises
- Proceedings and other details will be available at www.pdc2011.org and through IAA

Many Thanks...

...To the Romanian Space agency for outstanding hospitality and support of the conference.

"All trademarks, service marks, and trade names are the property of their respective owners"

Next Meeting: 2013

1.2 kilometer BARRINGER (OR METEOR) CRATER, Arizona, was created about 49,000 years ago by a small nickel-iron asteroid (Photo by D.J. Roddy and K.Zeller, USGS; Reprinted courtesy of USGS)

2013 IAA Planetary Defense Conference

will be hosted by

NASA

in

Flagstaff, Arizona.

Will include tour of

Meteor Crater

