

Matteo Emanuelli, Tobias Lips

UN COPUOS Scientific and Technical Subcommittee: 2015 Fifty-second session 6 February 2015

IAASS

Background

> ~40 large space debris objects (>800 kg) reenter in the Earth's atmosphere randomly each year

IAASS

 \geq 10 to 40% of mass survives reentry and impacts the Earth's surface posing hazard to people and property

> Debris are spread over long, thin ground footprint

Location of uncontrolled reentries is unpredictable

Impacts are under the track of the space object

Precise location of fall back area along the track is impossible

Source: www.russianspaceweb.com/phobos_grun_reentry.html

IAASS

Risk for Aviation

Risk for Ground

Acceptable casualty expectation for <u>controlled reentry</u>

• 1x10⁻⁴ for US

IAASS

• 2x10⁻⁵ for France

Acceptable casualty expectation for <u>uncontrolled</u> <u>reentry</u>

- 1x10⁻⁴ for US
- Exceptionally acceptable in France

Calculated recurring to different factors:

- Footprint generated by debris fragmentation
- Density of population
- Type of buildings

Risk for Aviation?

- For controlled reentries or space vehicles launches: closure of airspace areas over the fall back areas where the risk is unacceptable
- > For uncontrolled re-entries: not currently quantified or controlled on event-basis
- Annual debris catastrophic collision risk for aviation roughly estimated* in 2006 to be ~ 3x10⁻⁴ (Air traffic double every 15 years)

*Risk to Commercial Aircraft from Re-entering Space Debris - R. Patera http://www.scientificamerican.com/

Risk for Aviation

December 1996. A Chinese Boeing 757-200 passenger plane flying from Beijing to Wuhan was forced to make an emergency landing after the exterior glass of the cockpit window was cracked by an unidentified flying object at 9,600m. The plane made a successful emergency landing at Beijing's Capital International Airport.

March 27, 2007. wreckage from Russian Progress 23P cargo was spotted by an Airbus A340 of LAN Airlines, travelling between Santiago, Chile, and Auckland, New Zealand, carrying 270 passengers. The pilot estimated the debris was within 8 km of the aircraft, and he reported hearing the sonic boom as it passed.

January 2012. Russian Phobos-Grunt uncontrolled re-entry. EUROCONTROL received a NOTAM from Russian authorities, requesting to close Europe airspace for 2h (calculated cost ~ \in 20 Million)

ADMIRE

AVIATION - DEBRIS AND METEOROIDS INTEGRATED RISK EVALUATION

1) Estimate of annual integrated debris and meteorites impact risk for aviation (globally and locally for regions of highest air traffic).

2) Assessment of new space systems compliance with applicable reentry risk safety requirements, taking into account densities and vulnerabilities of ground population and aviation traffic.

3) Real-time risk management of space debris reentries in support of decision making by civil protection and air traffic control authorities.

Estimate of annual integrated debris and meteorites impact risk for aviation (globally and locally for regions of highest air traffic)

IAASS

International Association for the Advancement of Space Safety

7

Assessment of new space systems compliance with applicable reentry risk safety requirements, taking into account densities and vulnerabilities of ground population and aviation traffic

IAASS

New Space Systems

Fragmentation Model (Input)

Air Traffic Density

Population's Density on Ground

Assessment of compliance with applicable reentry risk safety requirements

Real-time risk management of space debris reentries in support of decision making by civil protection and air traffic control authorities

2

IAASS

5

Focus on major air trafic density regions

<u>طع</u> ADMIRE

Definition of the impact risk on ground, sea and air

Data to be transmitted at appointed authorities in order to mitigate the risk

6

IAASS

WP PM - IAASS

Management

Project

ADMIRE	Study	Logic	

WP 0			<u> </u>	
State of the Art		WP HTG Fragmentation and	WP ASTOS Air Traffic Density	WP ACTA ADMIRE Annual Risk
WP 0.1 - ACTA <i>Re-entry risk</i>	WP 0.2 - ASTOS Air Traffic Density	Survivability	Modelling	Report
	Мар	WP CNES	WP ACTA	WP ACTA
WP 0.3 - ACTA Aircraft Vulnerability	WP 0.4 - CNES <i>Meteoroids</i>	Meteoroids	Aircraft Vulnerability	ADMIRE Individual Event Risk Report
WP05-Paul		WP ISTI-CNR	WP UNI-	WP ACTA
Wilde Space Debris	Fragmentation	Real-Time risk assessment	HANNOVER/SALZSBURG Real-Time risk warning	ADMIRE Real-Time Risk Assessment Module
WP 0.7 - CNES Fragmentation	WP 0.8 - ACTA Patera's Methodology			

THANK YOU FOR YOUR ATTENTION

UN COPUOS Scientific and Technical Subcommittee: 2015 Fifty-second session 6 February 2015