Search for dark matter particles in space: International experiments PAMELA and GAMMA-400

S.A. YORONOV National Research Huclear University MEPHI Moscow Lebedev Physical Institute RAS

52th session of the Scientific and Technical Subcommitee on the Commity on the Peaceful Uses of Outer Space, Vienna 2-13 February 2015

RUSSIAN-ITALIAN ASTROPARTICLE EXPERIMENT «RIM - PAMELA» -THE FIRST REALIZED PROJECT FOR SEARCH AND STUDY OF DARK MATTER NATURE IN SPACE

Leader investigators: from Russian side professor A. Galper from Italian side professor P. Picozza Launched in orbit on June 15, 2006, on board of the DK1 satellite by a Soyuz rocket from the Baikonour launch site. 8,5 years in orbit

The amount of data collected is ~ 20 TB, corresponding to more than 5×10^9 events.

PAMELA Collaboration

RUSSIA

The content of our Universe

The ΛCDM standard model

Study of dark matter origin

positron fraction

The main results:

- 1. PAMELA obtained an increase of galactic positron/electron flux ratio for energy range from 10 GeV up to 150 GeV. This contradicts to mechanisms of secondary electron and positron production.
- 2. In the same time measured values of antiproton/proton flux ratio is in agreement with model of secondary production.
- 3. These experimental facts can be explained by
 - **annihilation and/or decay** of hypothetic particles, that **dark matter** can consist.

It is the first positive indirect observation of dark matter particles.

THE SCIENTIFIC GOALS OF GAMMA-400 PROJECT

Study of the dark matter origin by gamma rays, electrons and positrons from annihilation and decay of the dark matter particles.

Study of processes of in active astrophysical objects including the center of Galaxy

Study of generation and propogation of cosmic ray electrons and positrons

Study of high energy gamma-ray bursts

Precise measurements of discrete astrophysical sources

GAMMA-400 Collaboration

Russian scientific organizations	Foreign scientific organizations
Lebedev Physics Institute RAS — main collaborator	Istituto Nazionale di Fisica Nucleare (Italy) — strip detector and calorimeter
National Research Nuclear University MEPhI — detectors	Istituto Nazionale di Astrofisica (Italy) — strip detector
Research Institute for Electromechanics design, temperature control system	Taras Schevchenko National University (Ukraine) — Ukrainian main collaborator
Scientific and technical Institute of system research RAS — electronics	Lviv Center of Institute for Space Research (Ukraine) — magnetometer
Ioffe Physics-Technics Institute — Konus-FG burst monitor	Institute for Scintillation Materials (Ukraine) — scintillators
Institute of high energy physics — calorimeters, scintillators	Royal Institute of Technology (Sweden) — anticoincidence
Scientific and technical Institute of Mechanical Engineering — qualification	

MAIN PERFORMANCES OF GAMMA-400 TELESCOPE

Energy range	0,1-3000 GeV
Angular resolution ($E_{\gamma} > 100 \text{ GeV}$)	~0,01°
Energy resolution ($E_{\gamma} > 100 \text{ GeV}$)	~1%
Rejection of charged particles	~5x10 ⁵
Surface	
- anticoincidence system	$1,44 \text{ m}^2$
- calorimeter	0,64 m ²
Thickness	
- convertor	1,0 rad. length
- calorimeter	25 rad. Lengths
Mass	2600 kg
Power consumption	2000 W
Volume of transmitted information	100 GBytes per day
Detected particles	Gamma photons, electrons, positrons, protons, nuclei

High energy resolution

Conclusion

1. The first registration of dark matter particles was done by PAMELA instrument.

2. The new instrument GAMMA-400 for dark matter particle study by gamma-astronomy methods is under developing Thanks!